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SUMMARY

In this paper, we obtain some properties of replaceable, perfect and associative /-l matrix
methods of summation.

I. INTRODUCTION

Let 1y and I be the linear spaces of absolutely convergent series,
convergent series and bounded sequences of complex numbers, respec-
tively. Let A=(apy) be an infinite matrix and x=(xxk) be a sequence of
complex numbers. We write formally

(1) Ap(x) = 21]( ankxx  (n=1,2,...)

and we say that A is an I-I method if each series in (1) converges and
(An(x) ) €l whenever (xy)el. Throughout the paper the sums will be
taken from k=1 t0 «.

Tt is known that the necessary and sufficient condition for A to be
an I-l method is

(2) 2 | ank | < M ( M independent of k)
n

[51. [6].
The matrix A is absolutely regular if and only if, it satisfies (2) and
the condition

(3) 2 ame=1(k=12,.)
n=]

51, [6].
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Let 14 denote the summability field of A, i.e., the set of sequences
which are transformed by A into I. Let I’ be the dual of /4. An applica-
cation of Theorem 1, p. 226 and Theorem 5, p. 230 in [9] shows that I
is an FK space, and that every f el’y may be evaluated as

(4) f (x) = 2ty 2 apkXk + S axXk
n k k

for some t, acl, and all xely, where the series > axxk and 2 tpapkXx
k n

converges for xels. If we now set h(x) = X taAn(x), then it is easily
n

seen that hel’s. If B is an I-I matrix such that ;< I, then B(x) =

T Bp(x) is a continuous linear functional on I, and hence
n

B (x) = leltnAn(x) -+ Zkakxk

for some t, acl, and all xel,.

2. PRELIMINARIES
An I-] method A is called perfect if ! is dense in I, in the seminorm
topology, [2].

Let A be an I-l method, then we will say that a sequence t=(tn)

satisfies property P if it is bounded and if ¥ X tpankXk converges
k n

for every xela, [1].

It is shown that an I-] method A is perfect if and only if for each
sequence t satisfying property P we have

2 tnz ankXk — Z 2 tnankxk
n k k n

for every xely, [1, Theorem Al
If A is an I-/ method and if tel_ and xely, then we write

t (AX) =2 th ankXxk,
n k

where the series is always convergent. We also write

(tA) X = X% 2 thankXk.
k n

whenever the series is convergent.
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An I-] method A is defined to be associative if t(Ax) = (tA)x
for every tel and every xela, [1]. Thus every associative I-l method is
perfect but the converse is not generally true, [1].

Let A be an I-l method and let xel,, then it is said that

x has AK if and only if 3 xypex converges strongly to x; x has SAK
k
if and only if X xgey converges weakly to x; x has FAK if and only if
k
2 xgex converges weakly,[1]. Where ey is the sequence whose k-th com-
k

ponent is one and all others are zero.

Let & represent the set of all sequences in I4 which have FAK. x
is associative if and only if (tA) x=t (Ax) for every tel_ . x is perfect if
and only if (tA) x—t (Ax) for every sequence t which satisfies property P,

Note that the following implications are obvious:
x has AK = x has SAK = x has FAK.

Let us write X Ay(x) = A (x) whenever the series = Ap(x) conver-
n n

ges.

An [-l method A is called absolutely consistent with an I-I method
Bif A (x) = B (x) for all xely n Ip, 2] '

An -l method A is said to be replaceable if there exists an absolu-
solutely regular method B such that Iy < Ig, [2].

3. MAIN RESULTS
3.1. Replaceability, Perfectness and Associativity of I-I Methods
of Summation and The Inclusion I, < v for an I-I Method A.

Theorem. 3.1.1. Every absolutely regular method is replaceable
but the converse is not generally true. \

Proof. Let A be an absolutely regular method of summation. Now,
if we set

®) f(x) = z Aux)
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for every xely, then it is easily seen that fel’s. By the Brown- Cowling
Lemma ( {2, p. 360] ), there exists an I-I method B such that [y < Iz and

(6) B (x) = f (x)
for all xel,. Hence

f(ek) =2 ank— 1 (k:1,2,...)
n

and

f(ex) = X bnx k=12,.)
are obtained by (5) and (6), respectively. Therefore, we have Z bpx=1
n

(k=1,2,...) which shows that A is replaceable.
For the converse, let us consider the following example.

Example 1. Let A=(apk) be a matrix with all the elements in the
first and second rows are equal to one and all the other elements are zero.
Since X | ankx | = 2 for every k, A is an I-l method but A is not abso-

n

Iutely regular. Moreover it is easily shown that Iy = y. Now, let B =
(byx) be the matrix with all the elements in the first row are equal to one
and all the other elements are zero. B is an absolutely regular method

since X | byk | = X bpre=1 (k=1,2,...). It is obvious that lg= y for
n n

this method, too. Therefore A is replaceable by B.

Note that, if an absolutely regular method A is replaceable by B,
then A is not need to be equivalent to B, (see [7, p. 31] for equivalent
methods). In fact, let A=(apx) be the identity matrix and B=(bpx) be
taken as in Example 1. Then A is absolutely regular and Iy= 1. Hence
I, < Ig with strict inclusion. It shows that A is replaceable by B but
it is not equivalent to B.

The above example shows the summability field of some I-l methods
of summation coincides with y. As it will seen in the following counte-
rexample, it is not necessary to be Ix< v.

Example 2. Let us consider the I-l method A defined by the matrix
A=(ank), given in [1], as follows:
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agn, =ln=12,..); a,,,=1 (n=1.2,..); apk=0, otherwise.
Obviously, x=(xx) belongs to I, if and only if £ | x,,_,+x, | < «. For
k

example, the sequegnce x={ (-1)k+!) belongs to Ix. But x¢ v, so Iy ¢y,

Now, we will consider the inclusion I, < vy under some conditions,
First of all let us give a definition and some lemmas.

The following definition is an adaptation of the definition given in
[81 for c-¢c methods to I-I methods, where ¢ is set of convergent sequen-
ces.

Defipition. 3.1.2. Let A be an I-l method and xely. We say that
x=(xx) satisfies properyt L if

(tA) x = X X tpanexx
kK n

converges for every bounded sequence t=(tx).

Let £ be the set of sequences in 4 which satisfy property L. Let
us say that an I-I method A satisfies property L if [y= f.

On the other hand, I = { x € ca: ¥ agxyx converges} is defi-

Kk ,

ned for any c-c method A where cjis summability field and ax are column
limits of the matrix A, [8], and it is shown, in [4, Lemma 3], that &%

= f N 1. Whereas we will obtain that F = £ for an I-l method in the
next lemma.

Lemma. 3.1.3. For any I-Il method A and any xel,, x has FAK if
and only if x satisfies property L. So that % = £.

Proof. let xely and x has FAK. Then
(M) 213{ f (ex) xk

converges for each fel's. If we write

(8) f(x) = Z tgAn(x)
n
for every xely and every tel_, then fel’y. By (8), we have

9) £ox) = 2 tank (k=12,...).

Combining (9) with (7) we get the necessity.
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Conversely, suppose that xely and satisfies property L. If fel'y,
then f has the representation (4) for some t,acl, and for all xela. In
particular,

f(ex) = X tnank+ ax (k=1,2,...).
n
Since X axxy converges for xels and x satisfies property L, X f (ex)
k k

converges. So the proof is completed.

Using the Lemma. 3.1.3 and [1; Lemma 1, Corollary and Demma 3 ]
we can obtain the following lemma, immediately.

Lemma. 3.1.4. An I-l method A is perfect and satisfies property L if
and only if it is associative.

Now, we give the inclusion theorem between I and .

Theorem. 3.1.5. Let an I-I method A be replaceable and satisfies
property L. Then, necessarily, Iy < v. '
Proof. By the hypothesis, Is= . Moreover there exists an absolu-
tely regular method B such that I, < Iy since A is replaceable. Then
X Bp(x) is a continuous linear functional on /4, and so
n

(10) B (x) = t (Ax) 4+ 2 agxk
Kk
for some t,acl, and all xels. In particular,

(11) B (ex) = X tpank+ ax (k=1,2,...).

Since B is an absolutely regular method, B(ex) = 1 (k=1,2,...). Thus,
using (11), we get

(12) 1 = 2 tpape+ ax (k=1,2,...).
n .
Hence, by (12), X xx converges for every xely, i.e., A< vy since ly= f
k
and X axx gconverges for all xela.
k

For example, the inclusion I, < v is strict for the identity matrix A.

Theorem. 3.1.6. Let an I-] method A be associative. Then A is rep-
laceable by B if and only if
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(i)  Z|Bux)|<e
n
(i) Z By(x) = T x¢
n k

for evey xela.

Proof. Sufficiency is obvious. In this theorem, our main purpose is

to show the necessity if (ii). Since the I-l method A is replaceable by B,

for every xels, X | Bp(x) | < oo therefore T Bp(x) converges. Moreo-
n n

ver, since the matrix A is associative, it satisfies property L by Lemma.
3.1.4. Hence Iy = vy by Theorem. 3.1.5. Then using (12), we write.

(13) T agxg= 2 xx— (tA) x.
k k

Substituting (13) in (10), we get
B(x) = t(Ax) 4 Z xx - (tA) x
k

for some t, acl_ and for all xel,. Since A is associtive, we see that

B(X)z Zxk
k

for every xelywhich proves the theorem.

REMARK. This theorem may give the idea that I5 coincides with
I since B is absolutely regular method and B(x) = X xi for every
k

x€la. But this is not generally true. Now we will give a counterexample,
to make it clear.

Let us reconsider the matrix A=/(apy) given in Example 1. It was
shown there that A is replaceable and I<y=I,. Furthermore, it can
be written that

(tA)x = (414 t3) X+ (t+ ty) Xpheet (G Ft)xK+.nn
= (u+ )5 x
k
and

t(Ax) = t; Zka—i- tZEkxk-{- 0+ ..

= (t;+ t;) T xx
k
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for every xelyand for every tel_ , and so A is associative. Now, let B=
(bnk) be defined as follows: All the elements in the first and second rows
are equal to } and all the other elements are zero. Obviously, B is an
absolutely regular method and Ig= +y. Hence. we have

B(x) = X Bu(x) =3 = xx+ F Xxp+ 0 +...
n k K
= ¥ xg
Lk
fox; every xela. So the inclusion I < I is strict.

The next corollary holds by Theorem. 3.1.1 and Theorem 3.1.6.

Corollary. 3.1.7. If an absolutely regular method A is associative,
then A (x) = X xi for every xelj.
k

3.2, Consistency Of Perfeét 1-l Methods Of Summation.

In this paragraph it will be shown that there exists a matrix which
sums all the sequences in [yto zero providing that A e (L]} is perfect. This
result has been obtained under a different hypothesis in [3, Theorem
3] but the proof was false. (See, M.R. vol. 52; number 3 (1976), p. 883;
=4 6237).

Theorem. 3.2.1. If an I-I method A is perfect, then there exits an
I-1 method B such that I, < Ig and B (x) = 0 for every xelj.

Proof. Since A is perfect, for each sequence t satisfying property P
we have

(14) t (Ax) = (tA) x
for every xely, [1, Theorem A]. If we set
(15) f{x) =1 (Ax) — (tA) x

for every xecly and each sequence t satisfying property P, then it is
easily seen that fel’s. Thus, by (14) and (15), we get

(16) f(x) =0

for every xels. By the Brown - Cowling Lemma, ([2]), there exists an
I-1 method B such that l,< Iz and
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an f(x) = B (x)
for every xels. So (16) and (17) give the result.

Finally, we give the following theorem dealing with absolute consis-
tency.

Theorem. 3.2.2. Let an I-] method A be perfect. Then there exists an
I-l method D which is consistent with A on / A

Proof. By Theorem 3.2.1 there exists an I-/ method B such that
la< Ig and

(18) B(x) = 0
for every xely. If we set
dnx= bnx+- anx

for all n and k, then D is an I-I method of summation. This relation yields
the results

Dy(x) = Ba(x) + Au(x), (n=1,2,...

and

Z [ Dalx) | 3 [ Bofx) |+ 2 | An(x) | < .

It shows that I, < Ip and for every xelj,

(19) D (x) =B (x) + A (x).
(18) and (19) imply that
D (x) = A (x)

for every xels. Hence, the proof is complete.

OZET

Bu ¢alismada; degistirilebilir, miikemmel ve birlegebilir I-I toplanabilme metotlarmin bazi
ozellikleri elde edilmigtir.
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