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ABSTRACT

Quite recently, Nanda has introduced the concept ioo of almost boundedness. In
the present paper author has defined the concept L% of generalized boundedness which
is related to the concept of FGB ~ convergence. The eoncept of F} ~ convergence was
introuded by Stieglitz, which is a generalization of almost convergence. Author further

extends the space L% to L% (p) just asly,c, ¢, and ioo were extended tol (p),

C(p), ¢, (p) and Tco (p) respectively, and characterizes certain matrices in L}, .

1. INTRODUCTION

In 1948, Lorentz [1] introduced the concept of almost conver-
gence by an application of Banach limits and characterized the
space f of almost convergent sequences by means of the following

property:
The sequence x = {x,} is almost convergent to

the value f-lim x, if

. 1 iin . s .
lim - k=2i x, =f-limx  (Uniformly i = 0,1,...)

This criterion can also be formulated: Let B, = (8,”) be the sequen-
ce of matrices B;'"Y = (b, ¥ (i)) with
[ 1
by (i) =

' 0 otherwise.

Thus x is almost convergent to the each value f — lim x, if
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(1) =) )
im(B x) = lim X b, () x, =f—limx
n 1 n neo k=0

(Uniformly i= 0,1, ...... )
Stieglitz [9] further generalized this concept by means of a
given matrix sequence B = (B;) with B, = (b, (i)), x of the space

1. of bounded sequences is FGB ~convergent

to the value Lim% x, if
lim (B,x) =lm £ by (i) x, = Limgx
- n n-»e® k=0
(Uniformly i = 0,1,
Recently, Nanda [7] defined the concept 1 of almost boun-
dedness in the following manner:
i, = {acs:sup | ®(a) | < =}
ni nji

where
Xp=a,Fa-+ ......... .. ... + a,

(Dg,l (a) = Tu,i (X) = Y11 (X)

and
i

1
tas (X) = nf1 .

g

Xk

[

i

(1)

= § bnk (1) Xk
k=0
Therefore iw can also- be formulated as:
~ (1 (1)
l, = {xes:sup | (B;x) - (B, x) | <= }
s n n_1 .

n,i
We generalize the space I, by means of a given matrix se-
quence B = (B,) with B, = (b, (i) as follows:
Ly = {xesoup [, (0 | <= )
n.i

where

T (x) = (By x)u — (B X)a-,
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- % (bnk (1) - bn_l;k (1)) Xk.

We further extend L* , to L*_ (p) justas [ ,l cand L ‘were

extended tol_ (p), !(p), ¢ (p) andl_ (p) respectively (see Maddox
[4], Simons [8] and Nanda [7]).

If p,, is areal number such that p, > 0 and sup p, < =, we
write '

Pa
Ly (p) = {xesioup [Woy () |'<=}

If p,=p VvV n, then L% (p) = L% .

The space L*_ depends on the fixed chosen matrix B=(B).
In case B = (I) (unit matrix) it is equal to 1. In case

N R
B, = (bl,,k (1)) it is same as 1.
2. Some Topological Results.

¢ Theorem 2.1. If inf p, > o, then L (p)isa complete linear
topological space over the complex field (] paranormed by g defined
by
p=/M .
g (x) =sup | ¥ (x) | (vxeL (p)

where M = max (1, sup p,).
Proof. Since p, /M < 1, we have (See Maddox [6], p. 31)
Pa /M n /M Pa/M
W ¥ 9 [ 2 1% 0 17 170,0) [0
and V A e (- (See Maddox [6], p. 346),

P./ M

@ |2 % max (L, |2 ]).
Therefore linearity follows from (1) and (2).

vy linear topological space X is called a paranormed space if
there exists a sub additive function g: X — R% such that
g(0) = 0, g (x) = g(—x) and the multiplication is continuous, that is,
Ay, > A and g (x; - x) — 0 imply that
g (A x,~Ax) >0 forall \e ¢ and xe X.
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It is easy to see that g (0) = o and g (x) = g(-x) for every
x € L, (p). The subadditivity of g follows from (1) by taking sup-
remum with respect to n and i. It follows from (2) that for x e (%
and x € L% (p)

g(Ax) <max (L, |2 ) g(x)

> Ax —>0and if Ais fixed,
> Ax = 0. Letinf p, = B > 0. Then we have

p/M
g(rx)<max (|2 [, [n]) g(x).

Therefore A — 0, x — o,
x =0

Hence for fixed x, A >0 ——> 3 x — 0.

Let {x%} be a Cauchy sequence in L, (p). Then {x,J} for each
k, is a Cauchy sequence in (, and hence x, — x, for each k. Put
x = {x,}. Now it can be easily seen that x € L%, (p) and g (xJ —x) — 0.

This terminates the proof.

Proposition 1. Let B = (B;) be a family of matrices with
N (B) < «.Thenl}, < L2

Proof. Let x €] . We have
Sup [ ¥, (9 | < N(®) [[x|]. <

Therefore x € LY, and hencel_, < L.

For r > o, a nonempty subset U of a linear space is said to be
absolutely r-convex if x, y € U and

|2 "4+ | # |" < 1 together imply that A x 4 u y e U.

A linear topological space X is said to be r-convex (See Maddox
and Roles [5]) if every neighbourhood of 0 € X contains as abso-
lutely r-convex neighbourhood of 0 € X. We have,

Proposition 2. L, (p) is 1-convex
Proof. If o << 3 < 1, then
U= {x:g(x) <3}

is an absolutely 1-convex set, forlet x,ye Uand | 7| +|u | <1,
then .



INFINITE MATRICES AND GENERALIZED BOUNDEDNESS 57
P, /M
ghx+uy) <(r|+ul]) . 38
This completes our proof.

Theorem 2.2. Let 0 << p, < qp,, then L% (q)is a élosed subs-
pace of L% (p).

Proof. Let x € L%, (q). Then there exists a constant K > 1
such that V n,.

q./
[ Y. x) ] < K.
implies that

) p. /M
“{Pn:i (X) l S K'

Therefore x € L. (p). Now suppose that x! € L), (q) and

x} > xe L% (p). Then for every 0 <<€ < 1, there exists an integer
N such that for every n,i

. Pa /M
| Wayi (69 - x) | <e  (Vi>N)

implies that

. ; q“/M . pn/M
[Pa, & -x) | < [V, (K-%x)] <e

Therefore x € L?, (q). And hence the proof is complete.

3. In this section we consider matrix transformations between
some class of sequences. We write

¥, (Ax) = (B; (Ax)), - (B, (Ax)), ,
= E{: (bnk (1) - bn—lvk (1)) Am Xm
= X o (i, m, n) x,
where
o« (i9 m,nj == Zk (bnk (l) - bn_l,k (1)) Akme

Theorem 3.1. A e (1, , L%, ) if and only if
sup X |« (i, m,n) | <=
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Proof. Necessity. Let A € (I», L%, ). Put
£ (x) = sup | Y, (A%) |

n,j

Now {f;} is a sequence of continuous seminorms onl_ such that
sup f; (x) is finite. Therefore by Banach-Steinhaus theorem (See
i

Maddox [6], p. 114) there exists a constant K such that for every
L, xel,
fi (x) < K|x],
Now by putting x = sgn « (i, m, n) in this above inequality neces-
sity follows immediately.
Sufficiency. Suppose that our condition holds and x ¢ 1, .
Then

sup | ¥,,; (Ax) | < supE |a (i, m, n)x, |
< 1% e sup X | (i, m, n) |

This completes the proof.

Theorem 3.2. Ac (1 (p), L. ) if and only if for every in-
teger N > 1

1/pm
(3.2.1)sup X |« (i, m, n) | N < .

Proof. Necessity. Suppose that A e (1, (p), L% ), and let
there exists an integer N > 1 such that (3.2.1) does not hold. The-
refore by Theorem (3.1), the matrix

1/pe
C=(Ch) = (a,x N ) ¢(,,LL),ie., there exists x ¢ 1 such
1/py
that Cx ¢ L, .Nowy = {y,} = {x, N '} €l (p). But we
have Ay = Cx ¢ L, , which is a contradiction to the fact that
Ae(, (ph I3

Sufficiency. Let us suppose that our condition (3.2.1) holds.

If we take N > max (1, sup | x| m), then for every n and i
/py,
I ¥,,; (Ax) I <X l « (i, m, n) | Niem

Therefore taking supremum over n and i, sufficiency follows im-
mediately. Hence this completes the proof.
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Theorem 3.3. A € (1 (p), L% ) if and only if
(i) There exists and integer N > 1 such that

qm _qm — _
supZ|a(i,mn)] N  <e«,(1<p,<e«.p'+q'=1)

Pm
(ii) sup |« (bmn) | < o (0 <pp <1).

Proof. Necessity. Suppose that A € ( (p), Ly, ) and put
T, (%) = ¥y,; (Ax)
and
f; (x) = sup, | ¥,,; (Ax) |.
we see that {T, ;} being a sequence of continuous real functions on
1 (p) for each n, and {f}} is also a sequence of continuous real func-
tions on Ip and sup f; (x) < «. then the result follows immedia-

tely by uniform boundedness principle (see Lascarides and Mad-
dox [2], Theorem 1). This proves the necessity.

Sufficiency. Here we only consider the case 1 < p,, < .
Suppose that the conditions (i) and (ii) hold and x €1 (p). Since we
know the following inequality (See Lascarides and Maddox [2],
p- 100): If x, ye - and N > 0 then

q

Im _ _Gm Pm
xy| < N(jx| N+ {y]| )
wbere

1 <pn<wandpt+q'=1

Hence

_ Im__~Gm Pm
| Wi (A%) | <Z N(JaGmn) | N+ [xu| ).

taking the supremum over n and i, we observe A € (1 (p), Ly,).
And hence our theorem is proved.

Theorem 3.4. A ¢ (C, (p), L, (p)) if and only if there exists
an integer N > 1 such that

—1
sup y ¥ [a(i,m,n) | N P < e,

n,i
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Proof. Necessity. Suppose that A e (C; (p), L%, (p)) and

x € C, (p). Put
P

Tp () = | Fopi (Ax) |

n,i
and

T; (x) = sup, T,,; (%)
Since {T, ;} and {T;} are the sequences of continuous real function
on ¢, (p) and sup T; (x) is finite. Therefore by uniform bounded-

ness necessity is proved.

Sufficiency. There is no need to prove this part. Since it can
be easily obtained by an anaylsis similar to Lascarides [3], Theo-
rem 10. Hence the proof is complete.

Finally, the author is grateful to Dr. Z. U. Ahmad for sugges-
tions and guidance.

OZET

Yakim bir zamanda Nanda; [7] de hemen hemen smmrhhk, 1%, kavramim
tammlamigts, Bu gahgmamizda, F% ~ yakinsakhkla ilisgkihi L% genellestirilmis s1-
mrhhk kavramim tammladik, Hemen kemen yakinsakhgin bir genellegtirilmesi olan
F¥% — yalansakliga Stieglitz tarafindan verilmistir. Ayrica cahgmamizda; 1%, ¢, ¢,
uzaylarmin sirasiyle 1% (p), ¢ (p) ve ¢, (p) ve genigletilmesi gibi, L% uzaymm da
L% (p) ye genisleterek, L% iizerinde baz1 matrisleri karekterize ettik,
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