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SUMMARY

In this paper, we consider hoth homotopy and sheaf theory and construct an algebraie
sheaf by means of the fandamental group. Tinally, we give some algebraic topogical characteri-
zations

1. The sheaf of the fundamental groups of a topological space.
First recall the following definition.

Definition 1.1. Let X, S be two topological spaces, and m: S > X be

a locally topological map. Then the pair (S, ) or shortly S is called a
sheaf over X.

Let X be a locally arcwise connected topological space. Then,
X has a basis of arcwise connected open sets. On the other hand, if W< X
Is any arcwise connected open set and x, y are points in W, then the
fundamental groups 7;(X,x) and =;(X, y) are isomorphic. From now
on, X will be considered as a locally arcwise connected topological spa-
“ecel2].

Let us denote by H the disjoint union of the fundamental groups
obtained for each xeX, i. e, H = x\EfX (X, x). Thus H is a

set over X. Let us now defineamap o: H>X as ce H=3IxeX
s0en(X,x) = 6 = [u]y = 9 (6) = x. Now, it x ¢ X is an arbit-
rarily fixed point, then let us denote by W=W(x) the arcwise connected
open neighborhood of x in X. If ], is a homotopy class in (X, x)
and y is any point in W, then there exists a homotopy class [8], in 7,
(X, y) which uniquely corresponds to [«],, since 7;(X, x) is isomorphic

*This paper is part of the author’s doctoral thesis.
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to m;(X, y). Therefore for any W=W(x) we can define a mapping s:
W > H as follows:

If [«], is an arbitrarily fixed homotopy class in =;(X,x), then for each
yeW,s(y)= | (y~'«) v]= [B],, where v is an arbitrarily fixed arc in
W with initial point x and terminal point y. Clearly s is well-defined and

1. s(x) = [«], € m(X, x).
2. 9058 = 1 .
LetT = {s (W): W=W (x) € X } U {H}. Then, T is a basis for a topo-

logy on H whose open sets are arbitrary unions of elements of T. In
fact, for any two elements s,(W,), s(W,) € T

1- If the intersection s;(W,) N s,(W,) % &, then there exists
at least one point y in W; N W,. Hence W; = W, and s,(W;) = s,
(W3). Thus, s;(W) N s,(W,) = s;(W;) e T.

2- If the intersection s, (W) N s5(W,) = &, then s;(W;) N s)(W>) €T,
since o e T.

Let us now show that ¢ is locally topological. If ¢ = [B], e H,y € X,
then ¢(c) = o([8],) = v. Hence, there exists a mapping s: W -~ H
58(y) =0,y e W= W (x). Now, let us assume that U(s) = s(W)
and ¢ [ U = ¢*,

1. The mapping ¢* = ¢ | U = s(W): U—W is injective. Because for
any 6,, 65 € 3(W) there are-arcs y;, v, in W with initial point x, terminal
points y,, ya, respectively such that o, = s(y;) = [(v;7' @) vily, =
Bily,» o2= s(v2) = [(y271%) v, Iy, = [Baly,. If ¢* (51) = ¢%(62), then
Y1 = Y2, s0 v ~ 2 and 6, = oy

2. 9*= ¢ |Uis continuous. In fact,c € U = s{W) = 9*(s) =Yy
€ Wandif V.= V(y) € W is a neighborhood, then s(V) < Uisa
neighborhood of ¢ and ¢*(s(V) ) = V < W. Hence ¢*is continuous.

3. ¢* 1= (¢| U)~! = s: W > U is continuous. Indeed, if y € W is
any point, s(y) = ¢ € U and U’ = U’(c) is a neighborhood of ¢, then
o (U’) © W is a neighborhood of y in W and s (¢ (U’) ) = U".

Therefore we can state the following theorem.

Theorem 1.1. Let X be a locally arcwise topological space and m;
(X, x) be tke corresponding fundamental group for each x € X,and H =
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VX 7y(X, x). If the mapping ¢+ H - X is defined as above, then there
XE

exists a natural topology on H such that ¢ is locally topological with
respect to this topology[l].

Thus the pair (H,p) is a sheaf over X.

Definition 1.2. The sheaf (H,p) given by the theerem 1.1. is called
the sheaf of the fundamental groups of X or 1- dimensional Fomotopy
groups of X '

Definition 1.3. The fundamental group =;(X, x) = ¢~ !(x) is called
the stalk of the sheaf (H, ¢) over X and denoted by H, for every x € X.

Now, if xeX is an arbitrarily fixed point and W = W(x) is its
arcwise connected open neighborhood, then let I'(W,H) — {s: st W —
H}. The set I'(X,H) is a group with the pointwise operation of multip-
lication. In fact, if s;, s, € I'(W,H) are obtained by means of the ele-
ments [o; ], [az] € 7 (X, x), respectively, then s, .s, is obtained by means
of the element [«;. o] € (X, x). It follows from this definition that
the operation of multiplication is well - defined and closed. Clearly,
the operation of multiplication is associative and the mapping I: W — H
is the identity element which is obtained by means of the identity ele-
ment of 7;(X, x). On the other hand, if s € I'(X,H) is obtained by means
of the element [x] € (X, x), then the mapping s—! € ['(W,H), which
is obtained by means of the element [x]~!, is the inverse element for
s € (W, H). Hence I'(W, H) is a group. Now, if the set A = X is any

open set, then A = U W,, where W, is an arcwise connected open
iel ! ! :

neighborhood for each i € I. Hence we can detine a mapping s: A -~ H
as follows:

If y € A is an element, then there exists an arcwise connected open
neighborhood W, such that y € W, and a mapping s;: W, — H. Then,
let s (y) = s;(y). Clearly, s is continuous and ¢ o s = 1,. Hence the map-
ping s is called a section of H over A. Let us denote by I' (A,H) all of
the sections of H over A. It is easily shown that I'(A,H) is a group
with the pointwise operation of multiplication. Thus, the operation
(.): H® H - H (that is, (51, 63) - 0y. 65, for every o, 5y € H) is
continuous. Hence (H, ¢) is an algebraic sheaf. It should be noticed
that the stalks of (H, ¢) may not be commutative.
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2. Characterizations.

Let X, X, be any locally arcwise connected topological spaces
and H,, H, be the corresponding sheaves, respectively. Let us denote
these as the pairs (X, H;) and (Xj,Hy).

Definition 2.1. Let the pairs (X,H,) and (X;,H;) be given. It is
said that there is a homomorphism between these pairs and it is written
F=(f, t*): (X,, H;) - (X3,H)), it there exists a pair F=(f, {*) such that

1. f: X; - X, is a continuous mapping,

2. f*: H;, - H_is a continuous mapping,

3. f*preserves the stalks with respect to €. That is, the following
square diagram is commutative.

f-!('

H | ——— H,

P4 ¢,

f
X1 e X 5

4. For every x; € X the restricted map f* |(H)x: (H)x -> (H,)ix)
is a homomorpbhism.

Definition 2.2. Let the pairs (X;,H,) and (X,,H;) be given such that
the map F = (f, £*): (X;, H;) - (X, H,) is a homomorphism. Then the
g (X29
H,), if the maps f* and f are topological. Then the pairs (X, H;) and
(X,, H) are called isomorphic.

Theorem 2.1. Let the pairs (X;, H;) and (X;.H;) be given. If
the map f:X; -~ X, is given as a continuous map, then there exists a
homomorphism between the pairs (X, H;) and (X, H,).

map F=(f, {*) is called an isomorphism and it is written (X;,H,)

Proof. Let x; € X; be an arbitrarily fixed point. Then f(x;) € X,
and 7 (X, x)) = (Hyx, < Hy, my(Xy, f(x))) = (Ho(x) < Hj are the
corresponding stalks, If 1, 31 are two arcs at xy, then the ares oy, 3, can
be defined as o, = fo oy, 35 = fo B, respectively. If a; ~ B, then oy ~ 3,.
Thus the correspondence [o]x, — [fou]f(x) is well-defined, and maps
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the homotopy classes of arcs at x, to the Lomotopy classes of ares at
f(x,), that is, to each element [« ]x, there corresponds a unique element
[fou Je(x)-

Since the point x; €X, is arbitrarily fixed, the above correspondence
gives us a map £*: H; - H, such that f*([«]) = [foa] € Hy, for every
[«] € H;. : '

1. f*is continuous. Because if U, = H, is any open set, then it can
be shown that f* -1 (U,) = U; < H, is an open set. In fact, if U, = H, is
open, then U, = iLe)I 8;2(W;) and ¢ (U,) = iLeJI W,, where the W,’s are

arcwise open neighborhoods and the s;2’s are sections over W;. Thus,
U W, = X, is open and f*l(pIWi) = U f-1(W;) = X, is open, since
1€ 1e

il
f is continuous. Moreover, since f-!(W,) is an arcwise connected open

neighborheod in X there exists a section si: f-4(W,) - H;. Hence
U, s; (((W;)) "= H; is an open set. Let us now show that
1€

U, = u si(-1 (W), TIf 6, = [a]x, € U = £*-'(U,), then there

1< i *

exists a Gy = [B]x2 [S U2 E) f*(Gl) = G and (pz(o‘z) = @3 ({p]xz) = X2,
where x5 = f (x;) and § = foa. Thus, if x; € W, then x; e {-(W;) and
oy = [alx, € u s! (W;). Hence U; < U, s! (-1 (W,)). On the other
. el 1 Kl 1

hand, ¢, € Y, 51i (f-'(W,)) implies that o, € s'f-! (W;) for some i € L
1€, ]

From here, if 6; = [«]x,, then ¢,(o;) = x;, and foa is a closed arc
at f(x;) € W,. Thus [foa]ix) = o2 € U, and Y s: = (wWY)) <« Uy
1€.

Therefore, U, = Y s! (f-Y(W,) ). Hence f*is a continuous map.
1€, 1

2. f*preserves the stalks with respect to f.In fact, for any o, =
[2]x, € H;

(fopy) ([o]x,) =1 (o1 ([2]x)) = i (xy).

(20f) ([ ]x) = oalf ([ ]x,)) = @a([foa Jox)) = £ (xy)-

3. For every x; € X the map *| (H)x,: (H))x, - (Ho)f(x) is ho-
momorphism. In fact, if «;, 8, are two arcs at x; € X, and ‘a, = foay,
B, = foB; are the carresponding arcs at f(x;) €X,, then

a(2t) , 0 <t <1)2

= .0y =
B2t-1) , 12 <t <1
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fa(2t) .0 <t < 1/2
00 =

fB2e-1) ,1/2 <t < 1.

That is, fo p = o,. B,. Hence,
(D) (8,1 = [2] [8:] = [ea8a] = [fo o By] =
£*([esByr -
Therefore, if we write F = (f, {*), I is a homomorphism.
Now, we can give the following theorem.

Theorem 2.2. Let the pairs (X, H)), (X,, H,), (X;, H;) and the
continuous maps f;: X; - X, f5: X, - X be given. Then, there exists
a homomorphism F = (f, £*): (X, H|) - (X;, H;) such that f = {, of ,
f* = f*, of*,.

Proof. Since f, of;: X; - X is a continuous map, there exists a
homomorphism F = (f= f; of, f*): (X, H;) - (X;, H;) (Theorem. 3.1).
To prove this theorem it is sufficient to show that f* = f*, o f*,.
However, for any [x] € H;

*([«]) = [tz of)) o a] and (f*; of*;) ([a]) = £*,(f*; ([x])
= {*, ([foa]) = [f2 o (f; ox)]. Thus, we must show that (f, of;) oax ~
f; 0 (f 0 &) rel. (0,1). Now, if « is a closed arc at x; € X;, then the maps
(f of;) oa: I > X; and fp0 (f; ox): I - X, are continuous maps at f,
(f;(x)) € X;. Let us define a magp F (t, k): IxJ - X as follows:

(frof )(a(t)), 0 < t < 1-k
F=F({ k) =
fro((fio »)(t)), I-k <t < 1.
It is clear that F is continuous. On the other hand F(t,0) = (fyof))
o a, F(t,1) = fo(fjea) and F(0, k) = F(l,k) = £,(f;(x;) ). Hence,
(f0f;) oa~ f,0 (fjon) vel. (0.1).

Now, we can state the following theorem.
Theorem 2.3. There is a covariant functor from the - category

of the arcwise connected topological spaces and continuous maps to the
category of sheaves and continuous homorphisms.

'Theorem 2.4. Let the pairs (X, H;) and (X;, H,) be given If the
map f:X; - X is a topological map, then there exists an isomophism
between the pairs (X, H;) and (X,, II,).
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Proof. By theoerm 3.1, there exists a homomorphism F = (f, £*)
between the pairs (X, H;) and (X,, H,). To prove this theorem it is
sufficient to show that f*is one -to- one and 1* ~! is continuous.

Since 1 is a topological map it is continuous, one -to- one, and f-1is
continuous. So, Theorem 3.1. induces the homomorphisms F = (f, £*)
and F-! = f-!, (f~1)*). On the other hand, for any two elements
[a]. 2] € Hy * ([g]) = £* ([a]) implies that [;] = [8,] =
(=* (8] = ED* ([B:]) Thus, (E)* (£ ([0 ]) = (E)* (€
([#2]))- Since (f-1)* o(f)* = (f 'of)* and f-! of = 1x, (f-! of)* = 1,
and [o;] = [«_]. Hence f*is one -to- one. Since *71 = (f-1)*, f*-! is
continuous

Therefore, F= (f, f*) is an isomorphism.

OZET

Bu makalede, bir topolojik uzayin esas grubu vasitasi ile, hir cebirsel yaj1h demet insa edil-
mis ve baz1 cebirsel topolojik karakterizasyonlar verilmistir,
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