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Abstract 

In almost all deterministic and artificial intelligence techniques, for the solution of the scientific problems such as design 

and control problems, the output estimations are performed depending on manuplations on the values of input variables. 

With the other words, lots of different values derived from input parameters are tried in order to obtain desired output(s). 

Contrary to these conventional estimation methods, this study consists of two parts in which a new artificial intelligence 

method called fuzzy inverse logic(FIL) is developed to determine or estimate the value of the input parameters that give 

the targeted problem output. In the first part of this study, after providing a brief overview about the method of classical 

fuzzy logic(FL), the solution approaches and calculation details about FIL are given. In the second part of the study, fuzzy 

inverse logic method was used to solve one simple mathematical problem and one simple civil engineering problem. After 

the validity of the developed method was demonstrated by graphics and tables. some evaluations were made about the 

method. 
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Öz 

Hemen hemen tüm analitik ve yapay zeka tekniklerinde, tasarım ve kontrol problemleri gibi bilimsel problemlerin çözümü 

için, arzu edilen sonucu elde edebilmek için girdi parametrelerinin değerleri üzerinde manuplasyonlar yapılır. Başka bir 

deyişle girdi parametrelerinin herbiri için birçok farklı değer arzu edilen problem sonucu elde edilene kadar kullanılan 

çözüm yöntemi üzerinde denenir. Bu alışılagelmiş tahmin yöntemlerinin tersine, hedeflenen problem çıktısını veren girdi 

parametrelerinin değerinin ne olması gerektiğini belirlemek veya tahmin etmek amacıyla bulanık ters mantık adıyla yeni 

bir yapay zeka yönteminin geliştirildiği bu çalışma iki kısımdan oluşmaktadır. İlk kısım olan bu makalede, klasik bulanık 

mantık hakkında kısa öz bilgi sunulduktan sonra, bulanık ters mantıktaki çözüm yaklaşımı ve hesaplama detayları 

verilmiştir. Çalışmanın ikinci kısmını oluşturan diğer makalede ise bir adet matematik problemi ve bir adet inşaat 

mühendisliği probleminin çözümü için bulanık ters mantık yöntemi kullanılmıştır. Geliştirilen yöntemin geçerliliği tablo 

ve grafiklerle ortaya konulduktan sonra yöntem hakkında bazı değerlendirmeler yapılmıştır. 

 

Anahtar kelimeler: Yapay zeka, Bulanık ters mantık, Bulanık mantık, Mantık, Ters mantık 
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1. Introduction 

 

The human beings created as the most perfect and 

honorable of all creatures, by developing many 

simple mechanical devices with the knowledge, 

intelligence, talent and skill granted to them, they 

are now able to manufacture machines that behave 

like themselves or that can imitate their own 

behavior and use them in many fields since their 

creation. The human beings have succeeded in 

turning not only their own characteristics, but also 

the behavior and creation characteristics of many 

other living things, even some natural phenomena 

into machine behavior and / or machine 

intelligence sometimes as parts, sometimes as a 

whole. The most well-known algorithms that 

human beings transfer the features and behaviors of 

other creatures to artificial intelligence are artificial 

bee colony (Karaboga and Akay 2009), ant colony 

optimization algorithm (Parpinelli et all. 2002), 

cookko bird algorithm (Rajabioun 2011), bat 

algorithm (Yang and Gandomi, 2012), particle 

swarms (Kennedy and Eberhart 19955) etc. Some 

of the algorithms that human beings transfer some 

of their own biological and behavioral features to 

artificial intelligence technology are artificial 

neural networks (Jain et all, 1996), genetic 

algorithm (Whitley 1994), memetic algorithms 

(Moscato et all, 2004), cellular automata (Chopard 

and Droz 1998), Fuzzy logic (FL) (Zadeh, 1965; 

Zadeh, 1973; Zadeh, 1975) etc. Apart from these 

listed artificial intelligence methods, other 

algorithms and methods such as simulated 

annealing (Van Laarhoven, and Aarts, 1987), taboo 

search algorithm (Cvijović and Klinowski, 1995). 

etc. are also available in the technical literature. 

 

By using of artificial intelligence algorithms in 

machine intelligence, advanced technological 

machines, called smart machines, which can decide 

on their own, communicate and work 

synchronously with each other, and learn 

themselves, have been manufactured. While these 

technological developments have facilitated 

human life in many areas, they have also started to 

cause some problems in sociological, healt, 

pysicological fields such as unemployment, anti-

socialization and obesity. Even the concern has 

already emerged that these smart machines may 

someday be out of control and become one of the 

enemies of mankind in the future. Rapid and 

intense developments in the technological 

hardware and software fields in the last few 

decades have been effective in the invention and 

manufacturing of these advanced technological 

products.  Particularly, discovered methods on 

artificial intelligence and the developed computer 

and / or electronic technologies have a great 

contribution on these inventions and 

manufacturing of the smart products. Finally, it is 

obvious that the ongoing studies in these areas will 

lead to many new technological developments and 

progress. 

 

1.1. Purposes and methods in a scientific problem 

solution 

 

Although the purpose in most scientific problems 

is to determine the values of the variables to 

achieve the desired results as accurately as possible 

with an acceptable error, computation flow in the 

methods used widely is based changing of 

variables values in the problem under consideration 

by trial and error algorithm or by another 

algorithm. To be more clearly expressed, after the 

computation flow starts with determining of initial 

values of the variables by a researcher, first 

result(s) is(are) calculated according to the first 

certain values of these input variables. Then, new 

values of variables are computed and assigned 

according to the error amount of the calculated 

results.  This computation process is repeated 

according to these new values. In the new value 

assignments many different approaches can be 

used. Especially in control problems and in 

engineering designs, various approaches, 

algorithms and functions can be used for 

optimization of input values.  The revision of the 

input values continues until the output with the 

acceptable error level is achieved or until the exact 

solution is reached. This is the same in most 

traditional methods and in most traditional artificial 

intelligence methods. In the FL approach, which is 

the one of the widely known of artificial 

intelligence method and used successfully in many 

fields, the situation is not different. In the classical 

FL approach, which is based on the ability of the 

human being to make new inferences in the light of 

what is known, the inferences are performed for the 

determination or prediction of problem outputs 

according to the values of the known input 

parameters.  However, the human beings have also 

the ability to make backward inferences or reverse 

inferences against the events and situations 

according to they experienced. In the other words, 

taking into account the events or situations 

experienced, a person can predict the input 

parameters that can produce similar results. Thanks 

to this vital feature, human beings have managed to 

be the ruler of the earth. Because they did not repeat 

the mistakes they made by making backward 

inferences, they predicted situations that could give 

possible bad results and thus they took precautions. 

Similarly, they were able to manage many 
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situations, events and production that would give 

the results they wanted by making inferences in 

reverse. 

 

The basics of this study, which was inspired by the 

ability of the human being to backward inference, 

are similar with the basics of the classical FL 

approach. Therefore, it is going to be useful to 

present here some essential information about FL 

before beginning to introduce FIL in detail. 

 

1.2 A short overview on FL 

 

As known FL is one of the powerful tool among 

artificial intelligent methods. FL theory first started 

to appear in 1965 with the introduction of fuzzy 

sets theory by Zadeh (Zadeh, 1965; Zadeh, 1973; 

Zadeh, 1975) and then it has been used in many 

scientific and engineering fields successfully. 

Some lately performed examples about FL can be 

found in the technical literature (Altaş, 1999a; 

Altaş, 1999b; Yager and Zadeh, 2012; Öztekin and 

Filiz, 2015; Altaş, 2017; Pörge, 2019). 

 

Computation flow in the FL can be divided into 

four main steps. First step is definition of 

membership functions and fuzzyfication of input 

and output parameters. The second is constitution 

of rule table or matrice according to the data 

obtained from previous experiences or 

computations and the third is computation of fuzzy 

outputs. Finally, de-fuzzyfication of fuzzy outputs 

is last step of FL computations. Summary 

information about these four steps is given 

following. 

 
1.2.1. Membership functions and fuzzyfication  

 

Fuzzyfication of values of a variable is done 

according to the fuzzy sets theory (Zadeh, 1965) in 

FL. Value range of variables are divided into parts 

in this step.  Each part is called as a fuzzy set. 

Constitution of fuzzy sets or dividing into parts of 

value ranges of variables are made depending upon 

some parameters such as computation sensitivity, 

properties of variables, properties of experimental 

or available data obtained from scientific 

experiments, solutions, previous experiences etc. If 

it is need to be expressed with another way, value 

range of a variable can be represented by fuzzy sets 

in FL theory. Although the fuzzy sets can be 

expressed or named differently from each other in 

a problem, in some cases some parts of their range 

values can be common. That is to say, there may 

not be an exact distinction between different fuzzy 

sets. So, an exact value of a variable can be a 

member of different fuzzy sets. The belonging of 

an exact value to a fuzzy set is expressed by its’ 

degree of membership between 0 and 1. In order to 

determine the membership degree, functions such 

as triangle, trapeze, sigmoid etc. are used (Terano 

etc., 1992; Tanaka, 1997; Ross, 2004; Harris, 2005; 

Altaş, 2017). 

 

In the Figure 1, fuzzy sets (Ai-1, Ai,  Ai+1), value 

range of variable A (0 - ai+2), value ranges of fuzzy 

sets (0, - ai , ai-1 - ai+1, ai - ai+2), triangle membership 

functions, membership degrees ( 𝜇𝐴𝑖−1
,  𝜇𝐴𝑖

 ) of 

value ax for Ai-1 and Ai fuzzy sets are presented with 

triangle memberships functions for example. 

 

 
 

Figure 1. Value Ranges of fuzzy sets belong to 

variable A and memberships degrees of value ax 

 

1.2.2. Constitution of rule table (matrice) 

 

The aim in this step is constitution of the table 

include rules which will be used in FL solutions. In 

the constitution of rules, the data obtained from 

previous experiences or from previous solutions is 

used. The terms such as “if”, “else”, “then”, “and”, 

“or” etc. are used in the rule constitution in FL as 

in the common logic. Some simple rule examples 

used in FL are given in Equation 1 and Equation 2. 

 

𝒊𝒇 𝐴 = 𝑎  𝒂𝒏𝒅 𝐵 = 𝑏  𝒕𝒉𝒆𝒏 𝐶 = 𝑐               (1) 

 

𝒊𝒇 𝐴 = 𝑎  𝒐𝒓 𝐵 = 𝑏  𝒕𝒉𝒆𝒏 𝐶 = 𝑐               (2) 

 

Especially “and” and “or” terms are used for the 

calculations of intersection of sets and union of sets 

and they correspond to numerically minimum 

value and numerically maximum value in FL 

computations respectively. These situations are 

expressed following Equation 3 and Equation 4 for 

a problem with two input variables (A and B) and 

one output (C) (Mamdani, 1975; Mamdani, 1976). 
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If A=Ai and B=Bj then C=Ci,j   AB  𝜇𝐶𝑖,𝑗
 =min(𝜇𝐴𝑖

; 𝜇𝐵𝑗
)     (3) 

 

If A=Ai or B=Bj then C=Ci,j   AB  𝜇𝐶𝑖,𝑗
 =max(𝜇𝐴𝑖

; 𝜇𝐵𝑗
)     (4) 

 

Constituted rules for a FL problem are gathered in 

a table called as rule matrice or rule table. All 

computations are made depending upon this table. 

 

1.2.3. Computation of fuzzy outputs  

 

In this step, after membership degrees of input 

variables in fuzzyfied space are computed, they are 

used in the determination of membership degrees 

of fuzzy output sets according to rules in the rule 

table (see Equation 3 and Equation 4). The area(s) 

under the line corresponding to the membership 

degree in a fuzzy output set is a fuzzy output of a 

rule. If there exist, other fuzzy outputs are 

determined for other rules in this step. The 

existence of a fuzzy outputs or the number of a 

fuzzy outputs depends on the numbers of the rules 

corresponding to the values of input variables. 

 

1.2.4. Defuzzification of fuzzy outputs  

 

After all areas under membership functions of 

output parameters for valid rules are determined 

according to the previous steps given above, they 

are drawn on the same axes and net values of output 

variables are computed according to the some 

defuzzification methods or equations.  Some 

widely used defuzzification methods are Center of 

Sums Method (COS), Center of Gravity 

(COG)/Center of Area (COA) Method, Center of 

Area/Bisector of Area Method (BOA), Weighted 

Average Method (WAM, First of Maxima Method 

(FOM), Last of Maxima Method (LOM), Mean of 

Maxima Method (MOM) etc. (Erdun, 2020).  

 

All FL computation steps summarized in the 4 

subheadings above are summarized in the Figure 2 

given below. 

 

 
 

Figure 2. Summarized FL processing steps for a problem with 2 variables. 
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2. Bases of fuzzy inverse logic (FIL) 

 

Human beings gain experiences in the face of 

physical problems and use these experiences to 

reach the desired goal in the face of new problems. 

They usually use these experiences by making two 

different types of inference. The first of these is the 

prediction of what the result might be by changing 

the values of the variable parameters in the 

problem. This type of inference constitutes the 

logic of classical FL. The second type of inference 

is the prediction of what the values of the input 

parameters should be in order to achieve the 

desired result, which does not exist among the 

existing results. This second inference constitutes 

the logic of the FIL method that is tried to be 

presented in this study. The data used in both 

inferences are the same. However, the inferences 

made are in the opposite direction. 

 

Considering all these, the main purpose of FIL is to 

determine which values the problem variables 

should take by using the data gathered from 

experienced samples in order to achieve the desired 

outputs. On the other hand, in many techniques 

with/without artificial intelligence, the aim is to 

predict what the problem output might be by using 

new input values in the models constituted. As an 

example constitution of a FL model to estimate the 

strength of concrete to be produced in a concrete 

plant based on the amount of materials in the 

concrete mix can be given. On the other hand, in 

order to determine the amount of materials in the 

mixture of a concrete production with a certain 

targeted compressive strength, it requires to search 

for solutions with many trial and error on the 

current FL model or it requires to constitute a new 

FL model. Instead of using these two options, using 

the FIL method on the same data and the same 

fuzzy model will be much more practical and 

effective. 

 

To give another example, the purpose of 

engineering designs is to design elements with 

dimensions and material properties that will bear 

external effects safely. In FL or other classical 

methods, in the light of the previously obtained 

information and data, it is determined whether the 

external load is carried for the previously selected 

material quality and element sizes. Then, in the 

light of the results obtained, the material quality 

and / or element dimensions are revised depending 

on the error in the results obtained and the 

operations are repeated until the result is obtained 

with acceptable error limits. If the FIL method is 

used in this problem, depending on the size of the 

external effects to be carried, the element sizes and 

material quality can be determined directly by 

performing the process flow in the opposite 

direction of FL calculations. 

 

3. Fuzzy inverse logic 

 

In order to apply FIL method on a problem, a 

suitable, accurate and precise FL model must be 

successfully constituted and validated for this 

problem. To ensure that the FIL method can 

produce accurate and precise results, it should be 

applied on an accurate and precisely modeled FL 

model. Because as stated before, FIL calculations 

are based on FL completely and in FIL 

calculations, the data and rules prepared for FL are 

used exactly. In addition, the defuzzification 

method used in the testing and validation stage of 

the FL model, should be used in FIL method. 

Otherwise, calculations performed with FIL may 

produce incorrect results. In addition, while FL and 

classical methods are applied directly, only one 

solution is produced at a time, depending on the 

content and size of the rule matrix used in the FIL 

method, it may be possible to determine a large 

number of solutions at once. Although this may 

seem like a disadvantage for FIL on the one hand, 

it is actually one of the most important and 

distinctive features of FIL. This important feature 

indicates the ability to produce alternative solutions 

to FIL. 

 

3.1.FIL computations 

 

With the rule matrix constituted during the 

development of the FL model, the digital map of 

the output parameter(s) is/are actually constituted 

depending on the input parameters. Each rule 

output is the known landmarks of all the 

coordinates of this digital map for that output 

parameter. Rule outputs are landmarks with known 

coordinates of this digital map for those output 

parameters. The first step in FIL studies is to scan 

this numerical map completely to reveal among 

which landmarks (valid rule outputs) the target 

value of an output parameter is located. These 

regions, where the target values of the output 

parameters are located, are defined as sub-solution 

spaces in this study. One or more solutions can be 

obtained in each sub-solution space. After 

determining the sub-solution spaces where the 

desired output(s) can be located, the coordinates 

defining each of these regions are obtained (Step 

2). That is, the fuzzy sets of input parameters in the 

rules that point to the landmarks in the digital map 

are determined. These fuzzy sets will hereafter be 

referred to as valid fuzzy sets in this study. In other 

words, the axes that make up the digital map are the 
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axes on which fuzzy sets of input parameters take 

place and those valid fuzzy sets for each input 

parameters are consecutive fuzzy sets. Determining 

consecutive valid fuzzy sets for each input 

parameter is the second step of FIL. 

 

In the third step, membership values of valid fuzzy 

sets determined for input parameters are searched. 

The computations made at this stage are similar to 

those in FL. For these computations, the 

membership values of the valid fuzzy sets are 

changed by iteration for the desired processing 

precision, and it is checked whether the solution 

obtained in each sub-solution space is equal to the 

desired output or if it is obtained with an acceptable 

error. If a result equal to the desired result or an 

approximate result with an acceptable error is not 

found in this step, the operations can be repeated 

by increasing the sensitivity in iterative operations. 

In the 4th step, if the result(s) is obtained with an 

acceptable error or equal to the desired output as a 

result of any iterative operation performed in the 

third step, the membership values of the valid fuzzy 

sets of the variable parameters and the net input 

values of those parameters are computed. The 

computations made at this stage are the opposite of 

fuzzyfication of the net input values in FL. 

Membership values in two consecutive valid fuzzy 

input sets are processed in membership functions 

representing these sets, and net values of the input 

parameter are calculated. In these calculations, 

relationships between membership functions of 

consecutive fuzzy sets are used. 

 

The operations performed in the third step of the 

method given in the 4 steps above are similar to the 

search for the desired output by trial and error in 

the FL method. Although this situation seems like 

a contradiction, the operations performed in the 

first two steps allow the search for a solution in a 

very small subspace compared to a very large 

global solution space. In this way, the transaction 

volume that may be very large is reduced and a 

solution is found in a reasonable time. The 

operations performed in these four steps of the FIL 

method are explained in detail below on a 

parametric problem with three input parameters 

and one output parameter. It is worth mentioning 

here that choosing a problem with 3 input 

parameters below was chosen to visually increase 

the understandability of the method. It is possible 

to easily apply the FIL method to problems with 

many input and output parameters. 

 

It is supposed that, there is a fuzzy model that is 

prepared and validated for the solution of a 

problem with three input variables such as A, B and 

C and an output such as O. This fuzzy model can 

be schematized in a three-dimensional space as 

shown in Figure 3. 

 

 
 

Figure 3. A fuzzy model schematized in 3D space 
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As can be seen from this figure, since the number 

of input parameters is 3, the dimension of this 

parametric problem is 3. Fuzzy sets of input 

parameters are shown on their respective axes with 

triangular membership functions in Figure 3. In this 

problem, if the input parameters A, B and C have 

the number of NA, NB and NC fuzzy sets 

respectively, then NR = NA × NB × NC rules must be 

used while constituting the fuzzy model. The fuzzy 

outputs of all these fuzzy rules are represented by 

solid dots in Figure 3. These points of which the net 

values and fuzzy sets of the input and output 

parameters are known, are landmarks in fuzzy 

output map. These points are vital points that guide 

and determinative in FIL computations. 

 

The FIL calculation steps to be performed on a FL 

model constituted as described above are given 

below. 

 

Step1- Determination of sub-solution spaces (valid 

rule groups) 

 

a) 0 dimensional output Searching 

b) 1 dimensional output Searching 

c) 2 dimensional output Searching 

d) 3 dimensional output Searching 

 

Step 2- Determination of fuzzy koordinates of sub-

solution spaces (determination of valid fuzzy sets 

of input parameters) 

 

a) For 1 dimensional output searching (for 1 

dimesional su-solution space) 

b) For 1 dimensional output searching (for 1 

dimesional su-solution space) 

c) For 1 dimensional output searching (for 1 

dimesional su-solution space) 

 

Step 3- Determination of memberships values of 

valid fuzzy sets of input parameters 

 

Step-4 Determination of net values of input 

parameters 

 

3.1.1 Determination of sub-solution spaces (valid 

rule groups) 

 

The first step in FIL calculations is to determine in 

which region(s) the desired Odesired value can be in 

the 3-dimensional space given in Figure 3. In 

general, if the Odesired value is between the smallest 

net output value and the largest net output value in 

the net output space, it can be said that there is at 

least one Odesired value in this space. This also 

means that it is possible to have the Odesired value at 

more than one point in this space. Since the Odesired 

value is a net value and consists of fuzzy sets in the 

output space, for a precise and accurate search, the 

net values or value ranges corresponding to the 

membership 1 of the fuzzy output sets in the output 

space should be used. In order to determine the 

location of the Odesired value, it is necessary to 

perform a combined search in all sub-dimensions 

of the global output space. In this 3D example, the 

solution searches to determine the valid solution 

space can be done as follows depending on the 

number of dimensions. 

 

3.1.1.1 0 dimensional output searching 

 

0 dimensional output searching means that the 

Odesired value is searched in the fuzzy output space 

without looking at any dimension. In other words, 

it means that the solution is searched at solid points 

in Figure 3 where none of the input parameters are 

variable. Another means of this is to investigate 

whether the Odesired value is equal to the net output 

of any 20=1 of the SR rules. If it is detected that 

there is an Odesired value at the end of this research, 
Fuzzy rule(s) is/are determined, which output the 

fuzzy output set at the detected point(s). 
 

Each of these rules is defined as a group of valid 

rules in 0 dimensional output searching searches. 

In 0 dimensional output searching operations, a 

rule group consists of 1 valid rule. 

 

3.1.1.2. 1 dimensional output searching 

 

In 1 dimensional output searching operations, 

one parameter of the problem is considered as 

variable and other parameters are considered 

as constant, and sub-solution space(s) where 

Odesired value may exist is searched. The 

searched solution space(s) is/ are actually one 

dimensional. This means that a solution will be 

searched between 21=2 points. 

 
Mathematically, this is the same as searching for a 

third point between two points whose coordinates 

are known. For this parametric problem, when the 

input parameter A is taken as variable and the other 

parameters are constant, whether there is an 

Odesired value on all the thick green lines that can 

be drawn between two solid points inside and on 

the surfaces of this cube is investigated. Two thick 

green lines drawn on the upper and front surfaces 

of the cube in Figure 4 can be given as two 

examples. The value of A parameter between the 

end points of this green thick lines are the same. 

Since both ends of a green lines correspond to the 

net values of two consecutive fuzzy output sets, 



Öztekin / GUFBED 11(3) (2021) 675-691 

682 

such as OX1 and OX2, whose membership value 

corresponds to 1 at that both ends, the search is 

performed by checking whether the condition 

given by Eq 5 is met.  

 

𝑂𝑋1−𝑛𝑒𝑡 ≤ 𝑂𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ≤ 𝑂𝑋2−𝑛𝑒𝑡              (5) 

 

After all of those processes described above are 

done for other parameters (B and C for blue and red 

lines respectively) in the problem, 1 dimensional 

output searching process is completed. The number 

of searching combinations to be performed in the 

1-dimensional output searching process can be 

determined by the following formula. 
 

𝑆𝑛1𝐷 =
𝑁!

𝑅!(𝑁−𝑅)!
=

3!

1!(3−1)!
= 3              (6) 

 

In this formula, N is the numbers of parameters in 

the problem, R is searching dimensionand 𝑆𝑛1𝐷 is 

the number of searching combinations.  

 

At the end of this search, if it is revealed that there 

may be an Odesired value on the line joining 21 = 2 

consecutive points, all the rules whose output 

corresponds to any of the fuzzy sets in these two 

points are valid rules for the solution. Rule groups 

that define all 1-dimensional sub-solution spaces 

by scanning the entire global solution space are 

determined at this stage. In 1 dimensional output 

searching, 1 rule group consists of 2 validrules. 

 

 
 

Figure 4. 1 dimensional Output Searching 

 

3.1.1.3. 2 dimensional output searching 

 

In 2 dimensional output searching, two parameters 

of the problem are taken into account as variables 

and the other parameter(s) are considered as 

constant, and sub-solution space(s) where the 

Odesired value may exist is searched. Searched 

space(s) is/are two-dimensional surfaces. This 

means that a solution will be searched on a solution 

surface located between 22 = 4 points. 

Mathematically, this is the same as investigating 

whether a desired point or points exist within a 

surface whose coordinates are known at all four 

corners. The solutions searched on the solution 

surface can not be in point form, but can also be on 

a line or a curve in this surface (Figure 5a, 5b, 5c). 

If the searched Odesired value is on a line or curve as 

shown in Figure 5b or Figure 5c, it means that there 

are infinite number of solutions. However, infinite 

number of solutions are not obtained in FIL 

computations. The number of solutions can be 

obtained in different numbers depending on the 

sensitivity determined in membership iterations 

and the acceptable error level. 

 

 
Figure 5. The existence of the Odesired value searched in the 2-dimensional Output Searching 

operation in the sub-solution space (a) on a point, (b) on a line, (c) on a curve. 
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Some of the searched solutions (blue points)  can 

be between any two of the horizontal or vertical 

black points shown in Figure 5 and defining the 

two-dimensional solution space. Such solutions, 

shown with blue points in Figure 5-a, are points 

that can also be obtained in a 1 dimensional output 

searching computations. The points shown in red in 

Figures 5a, 5b and 5c are solution points that 

cannot be obtained by the one-dimensional output 

searching computations. These red solution points 

can only be obtained in 2 or more dimensional 

searching computations. 

 

For the example problem, when input parameters 

A and B are taken as variables and the other 

parameter C is constant, on the front surface of the 

cube shown in Figure 6 and on the other layers 

parallel to this surface, (inside and on the surfaces 

of the cube) it is invatigated whether there is an 

Odesired value on all two-dimensional sub-solution 

spaces that can be created with 4 adjacent points. 

 

 
 

Figure 6. 2 dimensional output searching 

 

As can be seen from Figure 6 that the Oi, Ok, Om 

and Os are fuzzy output sets and they correspond to 

the points i, k, m and n respectively. In order to 

prove the existence of the solution mathematically, 

Odesired is compared with the net output values of Oi, 

Ok, Om and Os with 1 membership value. In 

comparison, if the condition given in the Equation-

7 is satisfied, the solution for Odesired is available on 

the plane constituted by the points i, k, m and n. 

 

𝑚𝑖𝑛 (𝑂𝑖−𝑛𝑒𝑡; 𝑂𝑘−𝑛𝑒𝑡; 𝑂𝑚−𝑛𝑒𝑡; 𝑂𝑠−𝑛𝑒𝑡) ≤ 𝑂𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ≤ 𝑚𝑎𝑥 (𝑂𝑖−𝑛𝑒𝑡; 𝑂𝑘−𝑛𝑒𝑡; 𝑂𝑚−𝑛𝑒𝑡; 𝑂𝑠−𝑛𝑒𝑡)     (7) 

 

As stated above, when parameters A and B are 

taken as variables, sub-solution spaces are 

investigated in all other planes parallel to the plane 

created by these parameters. 

 

2 dimensional output Searching operations do not 

end with considering only A and B parameters as 

variables. 2 dimensional output searching is 

completed after all the remaining binary 

combinations of all input parameters (A with C and 

B with C) are also performed. The number of 

binary searching combinations to be performed in 

the 2-dimensional output searching process can be 

determined by the Equation-8. 

 

𝑆𝑛2𝐷 =
𝑁!

𝑅!(𝑁−𝑅)!
=

3!

2!(3−2)!
= 3              (8) 

 

In Equation 8, N is the numbers of parameters in 

the problem, R is searching dimension and 𝑆𝑛2𝐷 is 

the number of binary searching combinations.  

 

At the end of this search, if it is revealed that there 

may be an Odesired value on the surface constituted 

by t 22 = 4 adjacent points, all the rules whose 

output corresponds to any of the fuzzy sets in these 

four points are valid rules for the solution. Rule 

groups that define all 2-dimensional sub-solution 

spaces by scanning the entire global solution space 

are determined at this stage. In 2 dimensional 

output searching, 1 rule group consists of 4 valid 

rules. 
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3.1.1.4. 3 dimensional output searching 

 

In 3 dimensional output searching, three 

parameters of the problem are taken into account as 

variables and the other parameter(s) is/are 

considered as constant, and sub-solution space(s) 
where the Odesired value may exist is searched. 

Searched space(s) is/are like three-dimensional 

volumes. This means that a solution will be 

searched on a solution volume located between 23 

= 8 points. The solutions searched in the three-

dimensional sub-solution space can be not only as 

a point, but also on a line, on a curve or on a 

surface, as in Figures 7a, 7b, 7c and 7d. If the 

Odesired value(s) is/are located on a line, a curve or 

a surface as shown in Figure 7b, Figure 7c or Figure 

7d, then an infinite number of solutions may be 

available. However, an infinite number of solutions 

are not obtained in FIL calculations. Different 

number of solutions can be obtained depending on 

the sensitivity determined in membership 

iterations. 

 

 
 

Figure 7. The presence of the Odesired value searched in the 3-dimensional output searching operation in 

the sub-solution space (a) on a point, (b) on a line, (c) on a curve, (d) on a surface 

 

The searched solutions (blue points) can be found 

between any two of the horizontal or vertical black 

filled points shown in Figure 7 that define a three-

dimensional sub-solution space. Such solutions, 

shown with blue solid points in Figure 7- a, are 

the solutions that can also be found in a one-

dimensional output search process. The searched 

solutions (green solid points), can be found 

between any 4 of the black solid points in the same 

space defining two-dimensional subspaces of 

space. Such solutions, shown with green dots in 

Figure 7-b, are solutions that can also be found in 

two-dimensional search operations. Since the solid 

points shown in red in Figures 7a, 7b, 7c and 7d are 

located in 3-dimensional volumetric space, they 

cannot be found by one-dimensional and two-

dimensional output search operations. For this, 3-

dimensional searching are required. 

 

 
 

Figure 8. 3 dimensional output searching 

 

For the explanatory problem, considering all input 

parameters A, B and C as constant, it is investigated 

whether the Odesired value is available in all three-

dimensional subspaces constituted by adjacent 23 = 

8 points within small cubes in the big cube shown 

in Figure-8. 
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As can be seen from Figure 8 that the Oi, Oj, Ok, Ol, 

Om, On, Os and Ot  are fuzzy output sets and they 

correspond to the points i, j, k, l, m, n, s and t 

respectively. In order to prove the existence of the 

solution mathematically, Odesired is compared with 

the net output values of Oi, Oj, Ok, Ol, Om, On, Os 

and Ot  with 1 membership value. In comparison, if 

the conditions defined by Eq-9, Eq-10 and Eq-11 is 

satisfied, the solution for Odesired is available in the 

space constituted by the points i, j, k, l, m, n, s and 

t. 

 

𝑂𝑚𝑖𝑛 = 𝑚𝑖𝑛 (𝑂𝑖−𝑛𝑒𝑡; 𝑂𝑗−𝑛𝑒𝑡, 𝑂𝑘−𝑛𝑒𝑡; 𝑂𝑙−𝑛𝑒𝑡; 𝑂𝑚−𝑛𝑒𝑡; 𝑂𝑛−𝑛𝑒𝑡; 𝑂𝑠−𝑛𝑒𝑡; 𝑂𝑡−𝑛𝑒𝑡)       (9) 

 

𝑂𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝑂𝑖−𝑛𝑒𝑡; 𝑂𝑗−𝑛𝑒𝑡 , 𝑂𝑘−𝑛𝑒𝑡; 𝑂𝑙−𝑛𝑒𝑡; 𝑂𝑚−𝑛𝑒𝑡; 𝑂𝑛−𝑛𝑒𝑡; 𝑂𝑠−𝑛𝑒𝑡; 𝑂𝑡−𝑛𝑒𝑡)                 (10) 

 

𝑂𝑚𝑖𝑛 ≤ 𝑂𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ≤ 𝑂𝑚𝑎𝑥                       (11) 

 

3 dimensional output searching operations end 

because there are 3 variables in this explanatory 

problem. However, if the number of variables 

(problem dimension) in the problem were greater 

than 3, just like in 2 dimensional searching, then 3 

dimensional output searching should be performed 

for all triple combinations of variables. 

 

The number of triple searching combinations to be 

performed in the 3-dimensional output searching 

process can be determined by the Equation-12. 
 

𝑆𝑛3𝐷 =
𝑁!

𝑅!(𝑁−𝑅)!
=

3!

3!(3−3)!
= 1            (12) 

 

In Equation 12, N is the numbers of parameters in 

the problem, R is searching dimension and 𝑆𝑛3𝐷 is 

the number of triple searching combinations.  

 

At the end of this search, if it is revealed that there 

may be an Odesired value on the sub-space 

constituted by 23 = 8 adjacent points, all the rules 

whose output corresponds to any of the fuzzy sets 

in these eigth points are valid rules for the solution. 

Rule groups that define all 3-dimensional sub-

solution spaces by scanning the entire global 

solution space are determined at this stage. In 3 

dimensional output searching, 1 rule group consists 

of 8 valid rules. 

 

3.1.1.5. R dimensional output searching 

 

In an R dimensional output searching, similar 

operations those of 1D, 2D and 3D is performed. 

The only difference is the number of variable 

parameters (dimension) in the searching 

operations. The solution is searched among all 
different 2R adjacent points within the global 

solution space. In R dimensional output searching, 

1 rule group consists of 2R valid rules.  

 

The number of searching combinations with R 

parameters to be performed in the R-dimensional 

output searching process can be determined by the 

Equation-13. 
 

𝑆𝑛3𝐷 =
𝑁!

𝑅!(𝑁−𝑅)!
                         (13) 

 

In Equation 13, N is the numbers of parameters in 

the problem, R is searching dimension and 𝑆𝑛3𝐷 is 

the number of searching combinations with R 

variable parameters. As understand from Eq-13 

that R can not be greater than N. Thats mean, the 

biggest value of searching dimension (R) can equal 

to N. 

 

3.2. Determination of fuzzy coordinates (valid fuzzy 

sets of input parameters) of sub solution spaces  

 

At the end of sub-solution space searches in 

different dimensions, the points defining the 

region(s) where the Odesired value can exist are 

determined. In other words, after all valid rule 

groups are determined, fuzzy input sets constitutes 

each rule in each rule group are determined. The 

most important feature of a sub-solution space is 

that they are defined by a single fuzzy input set 

with a membership value of 1 for constant input 

parameters, and by two consecutive fuzzy input 

sets for each of the variable input parameters. Since 

the fuzzy sets of the constant parameters in the 

problem are known and the value of their 

membership is equal to 1, their net values are also 

known. Therefore, there is no need to do anything 

in FIL for constant parameters. 

 

However, the consecutive fuzzy sets of variable 

parameter(s) and their memberships must be 

determined. Since the net value of a variable 

parameter is searched in 2 consecutive fuzzy sets 

in FIL calculations, these consecutive fuzzy sets 

are named as valid fuzzy sets of the parameter in 

this study. Valid fuzzy sets of input parameters are 

fuzzy sets of input parameters in the rules that give 

the points as output that constitute the sub-solution 
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space determined in the previous step. The 

determination of these valid fuzzy sets is explained 

in detail below, depending on the number of 

variable parameters on the explanatory example or 

the dimension of the output searching operations. 

 

3.2.1. Determination of valid fuzzy sets in 1 

dimesional sub solution space 

 

After 1-dimensional output searching operations, if 

the existence of the solution is proved by satisfying 

the condition in Equation 5, the fuzzy sets such as 

AX1 and AX2 corresponding to the fuzzy outputs 

Ox1 and Ox2 (see Figure 9 ) in the rules that satisfy 

this condition are valid fuzzy sets of variable A. At 

that time other B and C variable parameters are 

constant. If variable parameter is B (A and C 

parameters are constant) in a 1 dimesional sub 

solution space then, two valid fuzzy sets belong to 

only variable B can be determined for an existing 

solution. Similar expressions can be written here 

for variable C parameter. 

 

 
 

Figure 9. Valid fuzzy input sets and membership values for variable parameter A 

and Anet input value 

 

3.2.2. Determination of valid fuzzy sets in 2 

dimesional sub solution space 

 

After 2-dimensional output searching operations, if 

the existence of the solution is proved by satisfying 

the condition in Equation 7, there are the two 

consecutive fuzzy sets such as AX1 and AX2 called 

valid fuzzy sets of variable A and also there are two 

consecutive fuzzy sets such as BY1 and BY2 called 

valid fuzzy sets of variable B (See Figure 10). If 

variable parameters are A and B (C is constant) in 

a 2 dimesional sub solution space then, two valid 

fuzzy sets belong to each of the A and B variables 

can be determined for an existing solution. Similar 

expressions can be written here for other binary 

combinations of variables. 

 
 

Figure 10. Valid Fuzzy input sets for variable A and B parameters, merbership values 

and Anet and Bnet input values 

 

 



Öztekin / GUFBED 11(3) (2021) 675-691 

687 

3.2.3. Determination of valid fuzzy sets in 3 

dimesional sub solution space) 

 

After 3-dimensional output searching operations, if 

the existence of the solution is proved by satisfying 

the condition in Equation 9, Equation 10 and 

Equation 11, there are the two consecutive fuzzy 

sets such as AX1 and AX2 called valid fuzzy sets of 

variable A, there are two consecutive fuzzy sets 

such as BY1 and BY2 called valid fuzzy sets of 

variable B and also there are two consecutive fuzzy 

sets such as CZ1 and CZ2 called valid fuzzy sets of 

variable C (See Figure 11). If all parameters are 

variable in a 3 dimesional sub solution space then, 

two valid fuzzy sets belong to each of the A, B and 

C variables can be determined for an existing 

solution. If the number of parameters are bigger 

than solution dimension, which is 3, similar 

expressions can be written here for other triple 

combinations of variables. 

 

If it needs to be expressed here in general, when R 

parameters vary in N dimesional sub solution 

space, the consecutive two consecutive fuzzy sets 

of each R variable parameters can be valid fuzzy 

sets. If there exist(R<N), other parameter(s) of the 

problem is/are constant in this N dimensional sub 

solution space. When the rules which constitute N 

dimensional sub solution space are examined for an 

existing solution, it is understand that the only two 

consecutive fuzzy sets belong to the each variable 

are different. Each fuzzy sets of other parameter(s) 

is/are constant and do not vary. Selection of the two 

consecutive fuzzy sets belong to the each variable 

are done in this step. 

 

 
 

Figure 11. Valid Fuzzy input sets for variable A and B parameters, merbership values and Anet and 

Bnet input values 

 

3.3. Determination of memberships values of valid 

fuzzy sets 

 

Memberships values of valid fuzzy sets of input 

parameters must be known to determine the net 

values of the input parameters that give the desired 

Odesired value. In 0 dimensional output searching, 

membership values of valid fuzzy sets for each 

input parameter are constant and value is 1. For this 

reason, there is no need to make an extra 

computation for determining the membership 

value. 

In output searching operations with a dimension 

greater than 0, the memberships of consecutive 

fuzzy input sets belonging to the input parameter of 

a variable are tried to be determined by iteration 

operations performed with the desired sensitivity 

between 0 and 1. Relationships between 

membership functions of consecutive fuzzy input 

sets are used in iterative determination of 

membership value. 
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Figure 12. Membership iterations and membership 

sensitivity 

 

As seen from Figure 12 that, the difference 

between membership values between two 

consecutive iterations such as t and t+1 is shown 

with µ. The values of µ is increased, the 

membership sensitivity decreases. In order to 

perform sensitive computations in FIL method, 

value of µ may be chosen as small as possible. 

However, if the value of µ is chosen too small, too 

much iteration may be required in FIL calculations. 

Therefore, one should be careful in the choice of 

µ. In addition, there is no need to iterate 

separately for both Ai and Ai+1 fuzzy sets given in 

Figure 12 to determine membership values. The 

memberships of both Ai and Ai+1 fuzzy sets can be 

determined with a single iteration by using the 

relationships between the membership functions of 

adjacent fuzzy sets. Since membership functions 

belonging to Ai and Ai + 1 fuzzy sets in Figure 12 are 

triangular membership functions, the relationship 

between membership functions of these two fuzzy 

sets is as given in equation 14. In addition, the 

expressions given by Equation-15 and Equation-16 

are other relations that can be used for Ai and Ai + 1 

fuzzy sets. Similarly, Equation 16- Equation 17 and 

Equation 18 are used for parameter B and Equation 

19, Equation 20 and Equation 21 are used for 

parameter C in memebership iterations in this 

explanatory example. 

 

𝜇𝐴𝑋i
+ 𝜇𝐴𝑋i+1

= 1             (13) 

 

0 ≤ 𝜇𝐴𝑋i
≤ 1                (14) 

 

0 ≤ 𝜇𝐴𝑋i+1
≤ 1               (15) 

 

𝜇𝐵Yj
+ 𝜇𝐵𝑌j+1

= 1             (16) 

 

0 ≤ 𝜇𝐵Yj
≤ 1                (17) 

 

0 ≤ 𝜇𝐵Yj+1
≤ 1               (18) 

 

𝜇𝐶Zk
+ 𝜇𝐶Zk+1

= 1             (19) 

 

0 ≤ 𝜇𝐶Zk
≤ 1                (20) 

 

0 ≤ 𝜇𝐶Zk+1
≤ 1               (21) 

 
In FIL computations, iterations are performed for 

each parameter depending on the solution 

dimension. For solutions, these iterations are 

carried out not separately but in combination with 

each other. Therefore, as the number of parameters 

increases, an increasing number of iterations may 

be required. So, the extremely sensitive 

membership iteration selection may cause 

unnecessary transaction volume. However, 

membership iteration, which is not sensitive 

enough, may cause the solution not to be obtained.  

 

It is not necessary to use only ordinary iterative 

methods to determine the membership values of the 

problem's fuzzy input sets.  These membership 

values can be determined using many different 

methods that are available and widely used in the 

literature. With any of these methods, FIL analysis 

can be achieved much more effectively and in a 

shorter time or with less iteration. Which method 

or methods will be more effective to use for FIL 

calculations may be the subject of another 

study(ies). 

 

3.4. Determination of net values of input 

parameters 

 

The computations performed at this stage in the 

FIL method are the same as most computations 

made in classical FL. However, there are some 

differences between of them. However, there are 

some differences in the application of the FIL 

method. Valid fuzzy sets and membership values 

of these sets are used to determine the net values of 

the input parameters in FIL method. These 

memberships are determined by iterations as 

described previously, depending on the specific 

membership sensitivity. By taking into considering 

the solution dimension of the problem, all 

combinations of membership values are processed 

in fuzzy rules that constitute the fuzzy model. Not 

all fuzzy rules are used for this. Valid rules 

constituted with valid fuzzy sets of problem 

variables are used. The number of these valid rules 

is 2N in a problem with N variables. The fuzzy 

outputs obtained from the valid rules are passed 

through the de-fuzzificator used in the fuzzy model 

on which the FIL method is applied, and the net 
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output value (Onet) is obtained. If the calculated Onet 

value is equal to the Odesired value or is close to the 

Odesired value with an acceptable error (ea) the net 

values of the input parameters used in the 

calculation of the Onet value are the values searched 

in this problem. Since variable memberships in FIL 

computations are not computed based on the net 

value of variables, net values must be computed for 

membership values that provide equations (22) and 

(23). In FIL method, the computations required to 

determine the net input values of problem variables 

are the opposite of the fuzzification computations 

of net values performed at the beginning of the FL 

computations. 

 

𝑂𝑛𝑒𝑡 = 𝑂𝑑𝑒𝑠𝑖𝑟𝑒𝑑             (22) 

 

𝑂𝑛𝑒𝑡 − 𝑂𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ≤ 𝑒𝑎             (23) 

 

4. Summary and evaluations 

 

The application of the FIL method, described in 

detail in the previous sections, on a FL model is 

schematically summarized in Figure 13. As can be 

understood from this figure, while valid fuzzy set 

memberships in classical FL calculations are 

obtained depending on the net values of the input 

parameters, in the case of applying the FIL method, 

the memberships of the valid fuzzy sets 

corresponding to the determined sub-solution 

spaces are determined by iterations between 0 and 

1 values. After determining the membership 

values, the calculations performed in FL and FIL 

are the same until the net output values are 

obtained. After this stage, it is checked whether the 

desired output is achieved with the memberships 

determined by iterations in the FIL. These 

computations continue until solution (s) is/are 

found and/or membership iterations are completed. 

Net input values are obtained by the reverse 

application of the fuzzyfication in FL with the 

membership values for which the desired output is 

computed. Determination of sub-solution spaces in 

FIL method, finding valid rule and valid fuzzy sets, 

using relations between membership functions of 

valid consecutive sets, application of fuzzyfication 

in FL in reverse are the most important features that 

reduce the amount of computation volume. 

 

Although the solution can be found in a very short 

time with FL computations, the solution time in 

FIL computations can be longer depending on the 

size and number of dimensions of the sub-space 

searched and membership iterations and 

membership sensitivity. This is an indication that 

humanbeings have more difficulty and need more 

thinking while inferring backwards. However, this 

time is quite small besides the time taken to obtain 

the solution (s) by scanning the entire solution 

space by applying methods such as iterative or trial 

and error directly on a FL model without finding 

sub-solution spaces. On the other hand, while only 

one solution can be obtained in FL computations, 

many solutions can be obtained depending on the 

membership sensitivity and the dimension(s) and 

number of the space (s) that are searched in FIL 

computations. This situation, on the one hand, 

compensates for the time spent in solution, on the 

other hand, reveals the importance of the FIL 

method for problems where alternative solutions 

are very valuable. These general and brief 

evaluations, which are made here, are given 

together with sample applications in the second 

part of this study in detail. Thus, the validity and 

usability of the method has also been proven. 
 

5. Conclusions 

 

In this study, contrary to the FL method, which is 

based on the forward inference of human beings 

(output estimation from input values), the FIL 

method, which converts human beings' ability to 

make backward inferences (estimation of inputs 

that can give an output) into an algorithm on the 

same basis, is tried to be given. Some conclusions 

that can be drawn from this first part of the study 

are given below. 

 

➢ The basis of the FIL method is the same as that 

of FL. 

 

➢ The data used in the FL method can be used in 

the FIL method without any changes. 

 

➢ The FIL method can be applied on a previously 

developed FL model. 

 

➢ Unlike most methods, it is possible to make 

reverse inference and prediction with the FIL 

method. 

 

➢ A lot of alternative solutions can be produced 

with FIL analysis.  

 

➢ FIL computations can take more time than FL. 

 

➢ FIL and FL together fully represent human 

inference behaviors. 

 

➢ While FL allows one-way inference, its usage 

with FIL is much more effective and allows 

two-way inferences. 
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➢ The sensitivity of the FIL method and its ability 

to produce accurate results depend on the 

sensitivity of iterative membership computation 

and the accuracy and sensitivity of the FL model 

on which it is applied. 

 

It is thought that the FIL method alone and with FL 

can be widely used in many areas. 

 

 
 

Figure 13. Schematic presentation of the application of FIL method on a fuzzy model 
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