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ABSTRACT

The homoegneous radial equation of atmospheric tides has been solved numerically, th-
rouh its analogy with the Helmholtz equation, adoptig a realistic temperature structure below
110 km. Insight intto the properties of the media, a linear law for the variable coefficent is assu-
med and the relationships between exact solutions of the equation and the WKB approxi-
mations are therefore illustrated. The analysis has been carried out for two types of wave Pro-
pagation; the oscillatory and the trapped modes of the diurnal and semidiurnal oscillations.

INTRODUCTION

The subject of internal waves in media, such as the atmosphere
and oceans, is one of the oldest in fluid dynamics [1]. Atmospheric
tides~which may be looked upon as global internal gravity waves re-
sulting from a particular excitation have, therefore, attracted the at-
tention of many investigators, for the last century [2-4].

In the tidal theory [5], the vertical structure of the tidal wave
propagation is expressed in terms of a wave function, which is a solu-
tion of a linear, inhomogeneous, second order differential equation, with
variable coefficient. The characteristics of the vertical propagation of
the free oscillations are obtained, therefore, through the solutions’ of
the reduced homogencous wave equation. This equation shows analegy
with the Helmholtz equation, which is a typical one for oscillating

* International Centre For Theoretical Physics, Miramare-Trieste, 1981, ‘Preprir:lt
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systems in general. It is, sometimes, argued [6] that once a problem is
reduced to this form, it has been solved. This is the line of approach
of the present study.

As a houndary value problem, solutions to the reduced home-
geneous wave equation are evaluated, for the atmospheric regions belew
110 km. The validity of the WKB approximations to the solutions is
also investigated, for two types of tidal wave propagation, namely
the oscilltory and trapped modes of the diurnal and semidiurnal os-
cillations.

3. THE VERTICAL WAVE EQUATION

~

The atmosphere has an infinite number of modes of oscillations,
which are excited to varying degrees by the applied tidal force. The
latter can be resolved, therefore, into a series of components J, (x);
each of which excites a distinct mode (with number n) of oscillation.

{ For a given mode, the vertical structure-of thermally excited-fields
is governed by the solution of the vertical wave equation [7],

dzy“ 2 — k - 2
d<2 + wa? (X)yn = T{g—h; Ja(x)e*/ RN ¢
where x, the reduced height, is defined by:
Z ,
dzZ ‘
X = j HZ) e (2)

[+]

A realistic temperature profile, based on the hest available col-
lection of data [8,9]-as relevant to 45°N summer, is utilized in the pre-
sent analysis to evaluate x. The extracted scale height H(Z}(=RT(Z) [g)
is found to be represented fairly accurately by a fourth-degree
polynomial in the region (Z <100 km); (Fig. la-dotted curve). Above
that altitude, a constant positive temperature gradient is assumed,
ie. dH/dZ = Const. (= 0.25). The approximated H(x) profile is
shown in Fig. la (solid curve).

(%) (Eq. 1) is usually defined as the x-component of the wa-
venumber; for a given mode (of equivalent depth h,), p,(x) is solely
dependent on the temperature structure in the form:
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Ba?(x) = -+ + —hl— (kH + dH/dx) UNE))

where k = (_y—l) [ v; v is the ratio of specific heats of air.

We are concerned with the most important contributing modes

of the migrating solar diurnal (s = 1) and semidiurnal (s = 2) oscil-

lations; s is the longitudinal wavenumber; those are (1,-2), (1,1) and
(2,2), respectively. h, values for these modes have been previously
obtained [10], through the solution of Laplace’s tidal equation. Profiles
of the computed values of 42,(x) for these modes are presented in Fig. 1b.

Semidiurnal

yDiurnal
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Fig.(la) Reference atmosphere Fig.(1b)Refractive index[pz(x)] of the

atmosphere to Tidal oscillations.
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3. SOLUTIONS TO THE HOMOGENEOUS WAVE EQUATION

The general solution to Eq. (1) can be expressed as the sum of a
complementary function and a particular integral; the former is the
general solution te the reduced homogeneous equation:

d2y,
d;{2 -+ p'zn(x)Yn = 0 te (4')

which is analogous to Helmholtz equation [6]; with the variable co-
etficient depending solely upon T(x) (Eq. 3).

By inspection, the atmoéphere below 100 km (x<<15.6) can be di-
vided to equally spaced subregions, for each of which the variable co-
efficient 42 (x) can be approximated by a linear law in the form:

ph(x) = Pix + Q, NG
The linear representation (5) is shown in Fig. 1b. For all modes consi-
dered, it is obvious that the atmosphere, below 100 km, is divided into
three main regions—with different characteristics to the propagation
of the tidal waves-separated at levels x = 4.8 and 9.6.

In order to faciiitate the discussion, it will be assumed that one
mode is excited at a time, and drop the suffix n—thereafter—for simp-
licity in writing. Introducing a new independent variable:

X 2
s:jy,dx:—g%pﬁ;p.?>0 ....(6)
or
x 5
¢ = j Mk = W <0 (= - 9) (D
Helmbholtz equation, then assumes the form of Steke’s equation, [6],
T by =0 L ®
Thus, the solutions to the homogeneous equation (4) are:
y®) = p [AJ1/365) + BJ_15(8)]; u2>0 e (9)
or
y(x) = & [FAL/3(0) + BI_13(0)], »2<0 (=-23) ....(10)

where J +4;/5 and I4-{/; are the Bessel functions of the real and ima-
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ginary arguments, respectively. A(= a —|— ib) and B ( ¢ 4 id)
are two 1ntegrat10n constants.

At heights correspondmg to 15.6 <x<{16.8, p?(x) bas been ad-
justed to meet smoothly the temperature model dH/dZ. = b, i.e:

ud(x) = Ce®* - b’ B I ¢ 8§
where € = (k + b") H(x*)e®* h, x* = 15.6, b’ = 0.25" =
let ' s(x) = i o(x) = ——Iz)—,— AT ebrx2 / - (12)

Thus the homogeneous wave equation (4) assumes the Bessel dlfferen-
tial equation of the form:

Ay dy 1. . ' )
o SN B (1 - ”1;72‘5) y = 0; 12>0 ..(13)

or Bessel modified differential equation for sz(x) <O (negative modes)
In either case, the general solution to Eq. (4) is:

y(x) = AJip(8) + BY,();  w2>0 | oo (14)
or. y(x) = Alj,,(0) + BKl/b,(c), nw2<0 : ..(15)
Ji/p, and Y, /b, (I /b" and K, /,, are Bessel (modified Bessel) functlons of

the first and second kmds, respectively, of order 1/b’ ( 4 in- the
present study).

Therefore, the general solution to the reduced homogeneus equa-
tion (4) can be represented as:

y(x) = Ayi(x) + Bya(x) | -.(16)
Bessel functions have been obtained at all levels concerned x = O 0.1)
16.8, for the above mentioned modes, and consequently the linearly
independent solutions y; and. yz"are avaluated. It remains to obtain
the integration constants A and B for each oneof the subregions.

The linearized tidal theory requires that contact sheuld be ma-
intained at all times at the boundaries between the dtmosphenc regions,

i.e. it requires continuity in y and dy/ dx. ‘Thus “the arbltrary conq-'
tants A & B, for all the subregions are related.” ~ - s

4. ‘BOUNDARY CONDITIONS -

As a lower boundary condition, it is generally assumed [7] that
the vertical. component of velocity must vanish at. the surface, this
implies that:
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dy (1  H
< X:O_(T_ - )y(o) L)

On using (16), the condition (17) gives the ratio A/ B ( = « say).

At high levels, Z > 110 km, it is required [11], first, that y be
bounded and secondly, that the flow of energy be in the upward direc-
tion. The boundness of solution is met for p2(x) > O (Eq. 14), but in
case of p2(x) < O (Eq. 15) the growing exponential of I;,(c) in the
upper-most region is dropped, in order to avoid the paradox of infi-
nite energy densities.

5. CHARACTERISTICS OF THE FREE TIDAL OSCILLATIONS:

The general solution (16) of the homcgeneous equation (4) may
then be written in a complex form, representing a wave solution, as:

y(x) = a'y(x) el ® ....(18)
constant B is incorporated into the phase, and the constant a’, and
v(x) = (A]B)yi(x) + ya(x) with A/ B given by the use of the lower
boundary condition (17). y(x) results, thus obtained for the above
mentioned modes, are presented in table 1 at x=0 (1.2) 16.8; also inclu-
ded in the table are the P’s values (Eq. 5) for each subregion. The § cc-
lumn will be dealt with in the next section. The solutions of the homo-
geneous equation, reveal the following features:

(i) The diurnal mode (1,-2): p2(x) <O region extends to the top
of the domain, and is not much affected by the vertical temperature
structure; P <1 and consequently o3> 1 (Eq. 7). In such cases I ; 53 (o)
assume the asymptotic forms and to satisfy the upper boundary con-
dition one must have, in theory [6], A = B; A/ B; = 0.8898 in the
present study. At x = 4.8, P = -0.084 for the region below and
P = 0.021 above, leading to ¢ = 16.0 and 63.8, respectively. For
6>1, sclution (18) reduces to the asymptotic form solution:

y(x)~%BJ P oo .. (19)

N

This explains the characteristic behaviour of the sclution obta-
ined for this mode (table 1); the level (x = 4.8, Z~33 km) clearly
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separates two different regions of the atmospheric refractive indices
(Fig. 1a). Finally, the constancy in phase, incorporated in B suggests
th trapping of energy: a feature characteristic to the negative modes,
whose discovery was the most important contribution to theory of
atmospheric tides [12].

(ii) The diurnal mode (1,1): The function y(x) is in general oscil-
latory, with a wave length ~ 25 km, which is given by the reciprocal
of p. Once again, for large s, resulting from small p (Eq. 6). cne may use
the asymptotic forms [6] for J11,3(8) to give:

y(x) ~ 3B J P Cos (s - m/4) ... (20)
T

as revealed by the results for y(x) in table 1. The oscillatory behavi-
cur is not that pronounced, however, in the region just above the tem-
perature maximum (9.6 <x<<13.2). This, no doubt, can account for
the weakness and great irregularities observed in the solar diurnal
oscillation [13], due to trapping or interference.

(iii) The semidiurnal mode (2,2): This mode is a transition mode
in the sense that p2<<O (x<2.8, 7.7 <x< 14.2) and u2>0 elsewhere.
Therefore, y(x) depends significantly on the temperature distritution,
a fact which was central to the old resonance theory [14]. The vertical
wavelength of this mode, in general, exceeds 100 km—in the top layer
~and there is an appreciable region where the mode is evanescent and
barely grows (between 50 and 80 km).

6. WKB APPROXIMATION IN THE TIDAL WAVE PROPAGATION:

Substituting the complex form solution (18) into Eq. (4) and se-
paration of the real & imaginary parts gives:

2
Y do
W“YRK)“"’Z]:O ...2D)
& d ay
& YT£+2(T§) (TX):O . (22)

Eq. (22) is immediately soluble by quadrature:
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1
3
Y (-@3) —c .. ..(23)
) dx
C being a constant of integration

Applied to the problem at hand, WKB approximation [6 ] consists
in assuming that the first term in (21) is negligible, i.e.

(%)2 ~ p2 . ....29)

This is equivalent to the assumption that changes in p(x) become small
enough over a wavelength in the verticle, i.e.

1 d
_— N ¢/
[ — o e ‘ <1 (25)
1 d : . .
The WKB parameter 3 (= l = In [ ) is given in table 1,

for the above mentioned modes, from which it is clear that the WKB
approximation is valid for the whole range in case of the diurnal modes.
In case of the (2,2) mode, we get three planes at which u2 = 0, i.e.

1 d
l“‘ Frgals

—_— ....(26)
@

at x = 24, 7.2 & 14.4— corresponding to the turning points of the
Helmholtz equation, and WKB approximation breaks down.

If there are abrupt changes in p, a second approximation may
also be used; this is to assume p uniform except at a discontinity sur-
face at some height. This case is quite analogous to the reflection of
electromagnetic waves at the interface between media of different in-
dex of refracticn [15].

In vitrue of (23) and (24), Eq. (19) thus gives:

C .
X =——::Bi1X . .27
y(x) v @ (27)

Let us conmsider a tidal wave of amplitude C;/ /07, having a down-
ward pbase propagation but an upward energy propagation to the
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interface from below, a reflected awave C,/4/g; in the lower region
and a transmitted wave C, [ 4/pz; in the upper region. Without loss in
generality, the interface may be taken to be at x = O and numbers
1,2 indicate quantities corresponding to media 1(x<0) and 2(x> 0).
If discontinuities in pressure and vertical velocity are to be avoided,
both y and dy/dx must be continuous across the interface. There-
fore we get:

pofp =1

CI/CI_MZ/Ml‘f‘l ....(28)
At x = 15.6, it has been found that C,/C; = 0.10 and 0.15
for the oscillatory diurnal and semidiurnal modes (u?> 0), respecti-
vely. As the energy flux is proportional to the square of the wave mag-
nitude, 1-2 9 of the energy of these modes will be reflected and the
rest will therefore be transmitted to the thermosphere. The possibility
of significant tidal heating of the thermosphere, by upward propaga-

ting energy fluxes, has been previously investigated [13, 14].

7. CONCLUSION

To conclude, we have attempted, in the present study, to describe
the behaviour of free tidal waves, under naturally occurring conditions
in static, stratified fluids-through the analogy of the homogeneous
wave equation with Helmholtz equation. A main parameter that go-
verns the tidal wave propagation is the refractive index of the atmosp-
here, which for a given mode of oscillation is solely dependent on the
temperature structure. Therefore, the assumption of isothermal at-
mosphere, previously adopted in order to render the mathematical
treatment of the tidal equations more tractable,is rather a drastic one.

The merit of the present study is to represent the general solution
of the reduced homogeneous equation analytically. This will be used
in further inverstigation to obtain the general solution of the inhomo-
geneous vertical wave equation.
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