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On The Lie Group of Umbrella Matrices
Nuri KURUOGLU*, H. Hilmi HACISALIHOGLU**

(Received 21 March, 1983, and accepted 9 June, 1983)

ABSTRACT

" In this paper, Umbrella matrices are defined which are selected from GL (n, {Q) and it is
shown that Umbrella matrices form a matrix group with respect to the matrix product.

Next, a characterization of Umbrella matrices is given; among these it is proved that the gro-
up of Umbrella matices which are selected from O (n) and the group of Doubly Umbrella matrices
are subgroup of Umbrella matrices which are selected from GL (n, |®). Later it is shown that
this matrix group is a Lie subgroup of GL (n, 1R) and a characteristic propertyis given abeut this
Lie group. : :

Finally it is shown that, the Lie group under consideration is not connected and noncompact
are shown. At the end of this work, the Maurer-Cartan forms are investigated and using the prin-
cipal I-forms the dimension of the Lie group under consideration is computed.

I. INTRODUCTION

Umbrella Matrices are first defined in [1] and the related Umbrel-
la Motions are studied in [7]. Later in [13], another definition of Umb-
rella Matrices is given and the Lie group structures are investigated. In
this paper, we define the Umbrella Matrices in GL (n, 'R) differently
from [13]. Next, we show that the Lie group of [13] and the Lie group
of Doubly Umbrella Matrices which is investigated in [9] are Lie sub-
group of the Lie group of this work.

*Nuri KURUOGLU: Department of Mathematics, Inénii University, TURKEY.
**H. Hilmi HACISALIHOGLU: Department of Mathematics, GAZI University,
TURKEY. :



132 NURI KURUOGLU, H. HiLMI HACISALIHOGLU

II. THE GROUP OF UMBRELLA MATRICES AND A
CHARACTERIZATION

We will define Umbrella Matrices as follows;

DEFINITION II. 1: A matrix A € GL (n, |R) is an Umbrella
Matrix, if AS = S, where S = [11 ... 1]t e [R", and | ]t denotes the
transpose of a matrix and GL (n, |R) is the set of all nxn, nonsingular
matrices. The set of Umbrella Matrices will be denoted by [H (n).

Notice that this definition is different from the definitions given in
the literature by [I] and [13].

THEOREM II. 1: |H (n) is a subgroup of GL (n, {R).

Proof: We will prove this theorem in three steps. First, we will
show. :
i) (AB)S=S, VABEelH (n)

If A,B € |[-H (n), then from definition we get AS =S,BS = S and

(AB) S = A (BS). Hence we get (AB) S = 'AS. Then (AB) S = S. There-
fore AB €|H (n), for all A,B € |-H (n). Secondly, we will show

i) A-1 e |H (n), VA € |H (n) where A-1is the inverse “element of A in
[ (n). Let A € GL (n, [R). Then A-1 € GL (n, [}) and so that (A-JA) S
= A-1 (AS) =S.If A € [ (n), we can write (A-1A) S = S. HenceA~1
€ [+ (n), for all A € | (n). Thirdly, we will show

iii) AB-1 € |H (n), for all A,B € IH(n).

Let A,B € |H (n). Then from (i) and (ii), AB € |H(n) and B-1 €
[H (n), for all A,B € |H(n). Therefore AB-1 € |H (n), for all A,B € [H(n).
Hence |H (n) is a subgroup of GL (n, |R).

~ DEFINITION II. 2: The above group of matrices will be called
Umbrella Matrix group. Now, we will prove the following theorem on
the characteristic of the Umbrella Matrices.

THEOREM 11. 2:

. ,
A= Jaz]e I aj=1,detAF£0, 1 <i,j <mn;forall AelH (n)
i=1
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Proof: (=): Let A € |H(n). Then AS = S. Therefore, we can write

.—311312...&111- -1 -1
az1837 ... sy 1 1

~_a.nlanz.-- ann_‘__l_ _1_
— a — U
E 813 1
i=1
n
pX azj 1
i=1 N /
= = = 2 a5y=1 1<i<n
=1
n
2 anj' 1
=1

n .
(=): Let A= [a;] € |R", and detA = 0. If X a;; =1,1 <i<n,
i=1

we ean write

- . — -1-
= a1j 1
I=1
n
b ayj 1
J=1 )
Tanap ... ang | |17 17
= . = &y ... asy 1 1
n F S [
2 anj ]. . . . 5.
_ i=1 - _ _dmany ... ann__ 1_ _1_
= AS = S,

Consequently, A e |H(n).
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III. THE LIE GROUP OF UMBRELLA MATRICES AND A
CHARACTERIZATION

In this section, we will show that thev group of rUﬁlbrella Matrices
is a matrix Lie group and later, we will give a characterization on this
Lie group.

THEOREM 11I. 1: The group of Umbrella Matrices is a Lie sub-
group of GL (n, |R) ; :

Proof: Let {x11, X31, +++s Xnl» - +» xpn} be a local coordinate
system on |R*? and Sy is the set of permutations which has n! elements.
Now, let us define the following differentiable functions for all y € IR,

fi: [R»* - R, fi(y) = %1 xiy)—1, 1 <i<n ' (1)
i—
and
fi;: [R22 - R, fii(y) = ZS (sgno) Xg (1)1 (¥) - - - Xo@un(y) = det [x1(y) ], (2)
6eSn

det [xij(y)] # 0, 1 < i,j < n where (sgno) denotes signature of ¢ € Sy.
Then

M= {y e[R* | fi(y) = 0, fi(y) = 0, 1 <1ij <n}
is a differentiable manifold in [R2* [3].

However, we will prove this theorem in two steps: First, we will show
i) |H (n) is a differentiable manifold.

Let us define a function ¥ as ¥: |H (n) = M, where M is a submani-
fold of |R®? as above such that let

¥ (Jay]) = (b1 bas - .., byo), with aj; = by g_yn, A = [ay]

1 < i,j < n. Hence we can find coordinate functions of |4 (mn) as follows:

I+ (n) > ﬂ’inz
Yy = xj50 ¥ AN ¢ xi5, 1 <i,j < m. 3)
xR

Then from (1) and (3) we get

BP(ay) = () —1 1 <i<n
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n
T 14

(xijo ¥) ([ay]) — 1 -

= X ¥y(m)—1 @

i=1
n . K

So that we can write X Wi(a;) = 1,1 < L,j < m, since A = [ajj]
ST '

£ (n) and Wy are coordinate functions on |H(n). From (4) we get f;
(F(ai7)) = 0,'1 < ij < n. Similarly, from (2) we get fi; (¥ ([asi])
= 0,1 <ij <n. Then V ¥ ([aj;)) € [R?* = ¥([ay]) € M. So II”'(I-I—l(n))
is a subset of M since V ¥ ([a;]) € P(IH(n)); that is

W(lH(m) < M.
Also, for all y ¢ M

. n L. .
fi(y) = 0= .21 xij (y) =1
. J:

and e L :
i) =0= I (sgno) xe1(y) - Xon (y) = det [Xn(YH
oeSy .
Therefore Vy e M = ye|f® = y = (by, bz, ey bny)
= y="Y (lay]) [an] € [H(n)
=y - ([1H(n)). Then
O Me Y (H). R ®
From (5) and (6) we get M = ¥ (|+{(n)). Now, we can show that ¥ is a

diffeomorphism from [H (n) to M < [»? and therefore H—l(n) ds  iso-
morphic to M. In fact, for all A,B e [ (n) ' :

(A) = lF(:B) <> (al, A%y v ey anz) = (bl, bz, ceey bn2)
@al_-bl,lgignZ
< A = B. N

Hence ¥ is one-to-one. Also V (by, by, ..., bp) eMc g2 3A =
[ai;] € [H(n) such that W(A) = by, by, ..., b,,) with aj;; = “higganm
1 <ij < n. So that ¥ is an lsomorphlsm from H—[(n) to M.
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On the other hand, (b, by, ..., b,,) are Euclidean coordinate func-
tions on [R12, they are differentiable. This show that ¥ is a differenti-
able function, so that [H (n) is differentiable and also diffeomorphic to
M. Now, let H;, H, be hyperplanes defined as follows:

H = {yelf® |[fi(y) =0, 1 <i<n}
and
Hy = {y e[ [fuy(y) = 0, 1 <ij <n}.

2
Then we can write GL (n, [R) n ( n Hi) = M. Also, since M =
i=1

- (H(n)) and |[H (n) is diffeomorphic to M, we get GL (n, |R) n

Hence [H(n) is a differentiable manifold. Secondly, we will show
ii) (A,B) — AB-1 is differentiable for all A,B € [H(n).

Since the group of Umbrella Matrices is a subgroup of GL (n, [R)
and GL(n, [R) is a Lie group, the map (A,B) -~ AB-1 is differentiable,
for all A,B € |H (n). Consequently, from steps (i) and (ii), [H(n) is a Lie
subgroup of GL(n, [R).

DEFINITION III. 1: The above Lie group of mattices will be cal-
led Umbrella Matrices Lie group and will be denoted by |[H(n).

Now, we will give a characterization on the Lie group of Umbrella
Matrices.

THEOREM 1I1.2: Let {x)1, %31, -« +» Xn1» - - -» Xnn } be a local coor-
dinate system on GL(n, [R) and let X € ¥ (GL(n, |R)) be the vector
field with

n
X= 3 &

i%§=1 Xij

such that £3; € C* (GL(n, [R), |R). Then

XeX (Hn) < % Ey | g = 0, for all g € [H (n) where
=1
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¥ (GL (m, |R)) denotes the space of vector field on GL (n, IR)

Proof: Let Xe ' ([H(n)), then we can find a one-parameter group {¥'s|

t € |R} which induces a vector field X on [H(n), [10]. So that we can
write

xiy (Ti(g)) = Pyt g). 1 <ij<n M
and
dtu |(t,g) - Eij (‘FID Yoty e ves Ian) I(t,g)-

If [‘I”ij(t, g)] € H(n) then we can write

n
Z lFij(t7 g) =1,1<i<n. (8)
=1

From (8)

n d¥y; . no gy B
j§1 dt »(t’_g) o Ov 4: j§1 dt 0% = 0. (9)

On the other hand

d‘}"i §

dt = (O’g) = gii (\Ylle lP‘219 cey ‘"an) (0°8)*

From (7)

le‘.. . . -
dtlJ Yosgy = &ij (x110%, x2:0%, .. ., xnno'¥) J(osg)

» : Eij (X1 1(To(g)), XZ'I(IFO(g))’ sevs Xnn(IFO(g)) o
= %n(ml(g), *21(g)s - - -+ Xnn(g))
= & g . (19)

From (9) and (10) we get
. ) .
2 &Glg=0,1<i<nm (11)
=1

(=>): For all g € |[H(n)
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n n s
Z &l =0= X %IL =0
i=1 g ‘ = ©8)
n
= '21 Wi(t.g) = e, c; € R,
= ,
n
= X W¥i(0g) =ct=0¢lR,
i=1
n
= I gij=cu (12)

n
From (12) and since X gi; = 1 for all g € H(n), we get
i=1

n
‘21 lej (t,g) = 1. (13)
j=

Consequently, from (13) W(t,g) € |H(n). Therefore we can find a
vector field such that x e ¥ (1H(n)).

1IV. THE LIE SUBGROUPS OF [{i(n)

In this section, we will state definitions and theorems from [13]
and [9].
DEFINITION IV. 1: The set of Umbrella Matrices which are cho-
sen from O(n) is denoted by A(n) and they are defined in [13] by
An)= {AeO@m) |[AS=S8,S=[11...1]teIR."}
where O(n) is the set of all nxn real orthogonal matrices.
THEOREM IV. 1: A(n) is a Lie subgroup of O(n), [13].
As a consequence of Theorem IV. 1, we have the following theorems:
THEOREM 1V. 2: A(n) is a subgroup of [H(n). ‘

Proof: Let A € A(n). Then we can write AS = S and A & O(n). If
A €O(n) then A € GL(n, [R). Hence AS = S and A e GL(n, [R). There-
fore A € [H(n) for all A € A(n). So that A(n) < |[H(n). Consequently
A(n) is a subgroup of H{(n).
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As a consequence of Theorem IV. 1 and Theorem IV. 2, we can gi-
ve the following theorem:

THEOREM IV. 3: A(n) is a Lie subgroup of [H(n).

DEFINITION 1V. 2: A matrix A € GL(n, |R) is a Double. Umb-
rella matrix if AS = S and AtS = S, where S = [11 ...1]t e Ry, [ ]t
denotes the transpose of a matrix and GL(n, [R) is the set of all nxn
real non-singular matrices. The set of Double Umbrella matrices is de-
noted by DU(n), [9].

"THEOREM 1V. 4: DU(n) is a Lie subgroup of GL(n, {®), [9].

THEOREM 1V. 5: DU(n) is a subgroup of [H(n).

Proof: Let A € DU(n). Then AS = S and A e GL(n, [R). From de-

finition of [H(n), A € [H(n) for all A € DU(n). Hence DU(n) H(n).
Therefore DU(n) is a subgroup of [H(n),

As a consequence of Theorem IV. 4 and Theorem IV. 5, we can gi-
ve the following theorem: : :

THEOREM IV. 6: DU(n) is a Lie subgroup of |[H(n).

V. THE CONNECTEDNESS AND COMPACTNESS OF THE LIE
GROUP OF UMBRELLA MATRICES

In this section, we will show that the Lie group of Umbrella Matn-
ces is not connected and non- compact.

THEOREM V. 1: The Lie group of Umbrella Matrices is not con-
nected.

Proof: For the proof of theorem, we should find at least two no-
nempty subset of |H(n) as |+ (n) and }{,(n) such that the set of Umb-
rella Matrices can be written as follows:

H () = [H1(n) U [Ha(n) and [Hi(n) 0 [Ha(n) =

Let us define the function of determinant as {: {H(n) - [R, £f(A)
= detA, VA = [ajj] € [H(n). Then we can define the following sets.

Hi(m) = {A e|[H(n) [vdetA >0}
and

FHam) = {A e }H(n) | detA <‘0}.
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- Therefore [Hi (n) # 2, Ham) # 2 and [Hi(n) 0 [Ha(n) = o
and also
Hi(m) U Ham) = [H(w).

Hence the set of Umbrella Matrices is not connected. Consequently,
we can say the Lie group of Umbrella Matrices is not connected.

THEOREM V. 2: The Lie group of Umbrella Matrices is a closed
Lie subgroup of GL(n, |R). :

Proof. Now, let us define the following continuous functions from
n
GL(n, |R) to [R as fi: GL(n, [R) - [R; fi([ay]) = 'Z1aij’ 1 <i<n
i= :
Then fi~1 (1) are closed subsets of GL (n, [R), for all A € [4+{(n). Therefore
. » .
n fi~1(1) is a closed subset of GL(n, |R) and also n fi~1(1) = [H(n).
i=1 =1 .

Hence [H(n) is a closed subset of GL(n, [R). Consequently, we can say
that the Lie group of Umbrella Matrices is a closed Lie subgroup of
GL (n, |R). Next, we can give the following theorem about compacthness.

THEOREM V. 3:The Lie group of Umbrella Matrices is non-com-
pact.

Proof. For the proof of theorem, we must show that this Lie gro-
up is not closed or not bounded. We know that the Lie group of Umbrel-
la Matrices is closed by the Theorem V.2. So that we will show that the
Lie group of Umbrella Matrices is not bounded.

Let A be a matrix such that

B O a l-a
A = [ ] , where B = [ ], ab e (R, a#b
(O | b 1b

and I, » is a‘identity matrix in CL(n -2, |R)-

n-2

Then B € }4(2) for all a,b € [R with a == b. Therefore A € [+(n)
for all a,b € |R, a 4 b. Hence |+ (n) is not bounded. Consequently, we
can say that the Lie group of Umbrella Matrices is non-compact.
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VI. THE MAURER-CARTAN FORMS ON |4/(n) AND THE DIMEN.-
SION OF |H(n)

We will define Maurer-Cartan forms on |+(n) and will calculate the di-
mension of |H(n) using the principal 1-forms on the Lie group of Umb-
rella Matrices. If the set of Maurer-Cartan forms on GL(n, [R) is Qi
(GL(n, |R)) and if W € Q, (GL(n, [R)) then the Maurer-Cartan forms
satisfy the following equation for all g, € GL(n, [§) and any g €
GL (n, [R).
(Lg™)* (Wgo) = W [ggo

Now, let {xi1, X31, <+ +Xn1, .., Xnn} be a local coordinate system on
GL(n, |R) and let wi; € Q; (GL(n, |R)) be principal 1-forms on GL(n, |§).
Then we can write the following equations for all g € GL(n, |R) by
[8]. '

[(Lg™) (dxxi fe)] = [wictlg] = [g ]! [dxj [e]
where ¢ € GL(n, |R) is a unit matrix and Lg is a left-translation at
g € GL(n, |R). Since the group of Umbrella matrices is a subgroup of
GL(n, |R) we can define the inclusion map as follows:

it i) > GL(n, [R) 5 () = & V g < Hi(n).
If g € GL(n, |R) with i(g) = g for all g € |+{(n), then we can define the
Maurer-Cartan forms on [H(n) using the map i* as i* (W) = £. for all
W e Q; (GL(n, |R)). Then £ e Q; (|H(n)) by. [8] where i* is a trans-
formation between the space of cotangent vectors as follows;

ig:  T*g) —— T*g)

GL(n, |R) H(n)
DEFINITION VI. 1.: The above Maurer-Cartan forms which are
defined with (W) = £ for all W € Q; (GL(n, [R)), will be called Maurer-

Cartan form on |H(n).

THEOREM VI.1: Let {X11, X215 «+ +» Xn1s - «» Xnn} be a local coor-
dinate system on GL(n, |R) and let wyi|g be principal 1-forms on
GL(n, |R) with o ’

(Lg™1)* (dxk1]e) = wii]g 1 <k, 1 <m

for all g € GL(n, [R). If &x1|g are Maurer-Cartan forms on |[H(n) with
i*(wk1lg) = Ek1]g gor all g € [H(n) then
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n

Y Galg=0,1<k<n

for all g € H(n).

Proof: We know that if wy;|g are prmclpal 1-forms on GL(n, I’R) for
all g.€ GL(n, |R) then

(Wi |e] = Tgwi 17! [dxy [e] = g7 1dg, 1 <k, L,j <n (1)
for all g € GL(n, |R). If g € [H(n) then g8 = S. Therefore we can write
dgS =0 org-1dgS = 0. ).

From (1) and (2) we get
[Wi,lg] S = 0,1 < k,1 < n.

Hence
n .
Z wki]g=0, 1<k <n. (3)
1=1
Using the equation (3) and the map i*, we can get
. n
(R wia [g) = i*(0)
1=1
and since the map i* is a linear transformation, we can write

S i*(wii |g) = 0. : - )
1=1

From (3) and the definition of the Maurer-Cartan forms on |[{(n) we
get '

fkilg =10, 1 <k < n, (5)
1

T e

DEFINITION VI. 2: The Maurer-Cartan forms on [+(n) which
are given by equation (5) will be called principal 1-forms on |H(n).

As a consequence of Theorem VI. 1 we have the following theorem
about the dimension of the group of Umbrella Matrices.
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“THEOREM VI. 2: dim [+(n) = n(n-1).

Proof: We have n linear equations among the principal 1-forms on
IH(n) which are induced from GL(n, |R) by Theorem VI. 1 as follows:

fxilg=0.VgetH@),l <k <n.

| M

1

Since the dimension of GL(n, |R) is n2, we can write

dim [H(n) = n2 — n = n{n—1).

OZET

Bu cahsmadaGL (n, |R) den segilen semsiye matrisleri tanimland1 ve bu matrislerin matris
carpum iglemine gore GL (n, |R) nin bir alt grubu oldugu gosterildi.

J-H(n) ile gasterilen bu matris grubu ile ilgili olarak bir karakteristik dzellik verildi ve bu mat-
ris grubunun [13] ve [9] tammlanan A(n) ve DU(n) matris gruplarmdan daha genel oldugu goste-
rildi.

Daha sonra | 4| (n) matris grubunun GL (n, |) nin bir Lie alt grubu oldugu gosterildi ve bu
Lie grubu ile ilgili bir karakterizasyon verildi.

Son olarak [ (n) Lie grubunun n>2 i¢in kompakt ve irtibath olmadif1 ispatland: ve' asli
1- formlar kullamlarak boyut hesab1 yapilda.
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