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On Generalized Mean Values Of An Entire Dirichlet Series
By
G. S. SRIVASTAVA and N. KUMAR

(Received May 12, 1982; accepted December 1, 1982)

ABSTRACT

For the entire function represented by an everywhere convergent Dirichlet series having
(psq)-order ¢ and lower (p,q)-order A, we have defined the generalized mean values mg,,(c) as:

mB,k(G’) =

1 j ® My(x) (logt® 1xyks
(log[9-t1g)k a A[q_2]<X)

where 0 <8 < s, a = expl9-11(0), A[q](x) = ]_gI loglilx, keR (R is the field of reals),
i=0
Mg(x) = loglP-211§ (x),

©
I§(c) = lim 'z_lT- j |f(c+it) |8 dt and p and q are integers such that p > q+ 1 > 0.
Ts>e oo

In this paper, we have obtained some growth properties of mg 4 (o), which include entire
functions of zero as well as of infinite order. Beside proving the asymptotic relation between
I3(c) and m§,(c) we have also studied the growth properties of means of more than one

entire function. The results that we obtain here generalize and improve several known results,

ol
1. Let f (s) = z an exp(sin), (8 = o + it, Anp1> Ap, Ap—>
n=1
as n+> o), be an entire Dirichlet series whose exponents are subject to
log n

the condition lim
n—cec n

= D < oo.

The (p,q) - order p (p,q) and lower (p,q) - order A (p,q) of f (s) are
defined as:

(L.1) lim sup loglPM () ¢ (p,q)
c— oo inf logldls A (p.,q)

I

P
A
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where p and q are integers such that p>q-+1=>0, M (¢)=L u.b | f(c+it) |,

—00 <t<{oo
loglalx = log log.... log (q times) x and logl0x = x. For further details
we refer to [7].

For an entire function f (s) having (p,q) — order p and lower (p,q)
—order ) we define the generalized mean values

(1.2) 1 j" Mj(x) (logla—tix)k-!

my,(c) = TogiaTTo)E J, A dx,

where 0<5< 00, a = expla=1(0), Arq(x) = 11 loglilx, keR (R is
i=0

the field of reals), My(x) = loglP—2115 (x) and

T
Is () = lLim %j £ (oit) |3 dt.

T— —T

The growth properties of the means ms, (c) for p = 2, ¢ = 0 and
p = 2, q¢ = 1 have been studied in great details. Juneja [6], Bajpai[2]
and others obtained the order relations for I3 (¢) and mg (o) for entire
functions of finite order having index pair (2,0).

The aim of this paper is to obtain some results for these mean values
in the general case of entire function having (p,q) — order p, which include
entire functions of zero order as well as of infinite order, for which the
results of Gupta and Shakti Bala ( [5], Th. 3), Bajpai ( [2], p. 32) and
Juneja ( [6], p. 310) do not hold. To avoid the trivial cases we shall
assume that f (s) is not an exponential polynomial.

2. THEOREM 1. Let f (s) be an entire function of (p,q) —order p
and lower (p,q) —order 2, then

(2.1) lim sup logl?lmg,(c) o  lim  sup logl’IMy(s)

c— oo inf loglals A ¢+~ oo inf log[‘”c.

PROOF. For t = expl4-2}{ (logl4~2]6)?}, from the definition of m3,; (o),
we have o

1 t My(x) (logla—tlx)k—t
my(t) > J 3(x) (log )&=

= ol 0F Jo ™ A a®
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Since I3(o) is an increasing function of ¢ therefore

log*-21T5(c) = M (o) will also be an increasing function of o.
Thus

MS(O') J‘t (log[q—l]x)k_l
mg’k(t) = (Toglt-TTo)x J Alq_zl(x) x
_ M; (o) (logla—It)k—(logla—tlg)k ]
- (logla—tlt)k k

- W[4

Thus proceeding to the limits as 6 o0, we get
sup logl2iM3(s) e

sup log[l]mg,k(t) ~ lim —

(2.2) lim inf Iog[‘ﬂt = inf logldls 2

G~— 00 G—> OO

since 6+ oo implies t — oo and logldlt ~ logldlg and from ( [4], Th.l)

i S9p logldlls(e) _ °
b o inf  loglalg )

Again from (1:2), we have

M3(c) (logta~tig)k—~(logld'lgo)k
mS,k(O') (log[q”llc)k k

] » G>0o",
which gives

(23) hm sup log[ﬂmg,k(c)

5es oo mf  loglals T, )

On combining (2.2) and (2.3), we get (2.1).

REMARKS (i) For (p,q) = (2,0) and & € Z,(the set of positive
integers) Theorem 1 was proved by Gupta and Shakti Bala ( [5], Th.1).

(ii) For § = 2 and index pair (2,0), from (2.1), we have

*o, need not be same at each occurrence.



158 G.S. SRIVASTAVA AND N. KUMAR

sup logPlm,(c) _ °

i
m inf c 2z

G 0O

k2

a result which was proved by Juneja ( [6]. Th. 3) for o <p < 00. The
above result was also proved by Kamthan ( [8], Lemma 1) under cer-
tain restriction on ay’s.

(iii) Theorem 1 generalizes and improves upon the result of Bajpai
( [2], p. 32) also which he proved for index pair (2,0), 0 <k <o and
finite p.

(iv) The left hand equality of this theorem is due to Bose and Srivas-
tava ( [3], p. 16) for p = 2, q = 0, 8>>1 and positive real k.

THEOREM 2. Let f (s) be an entire function of (p,q) —order p
and lower (p,q) —order A. Then

1 /logtdls
@4) im P Mjs(c) ] _ X (e)
s oo f Lmsu(o) exp (1)

Proof of this theorem is based on the following lemmas,

k

LEMMA 1. If log g (c) is an ‘ndefinitely increasing convex func-
tion of 6 (6>>06,), then logltlg (5) is also an indefinitely inereasing
convex function of ¢ (6>>65), where n is any positive integer.

PROOF. We prove this lemma by method of induction. By hypot-
hesis Lemma 1 is true for n = 1. Now

d*(log g (o)) _ g"(0) g (o) — (g'(0))?
do? (8(s) )2 ’

where dashes denote the differential coefficients with respect to 5. By
assumption, the left hand side of the above relation is positive, and hence

(2.5) g"(0) glo) - (g'(s) )>>0.
Further,

d*(logl>lg(c)) _ g"(o)g(0)+(g'(s) )2 [1+-(log g(s) )]
d o2 (8(0) )log g(o)
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Since log g(c) — o0 as ¢~ 0, therefore, using (2.5), we have for ¢ >0,

&(logilg(s) )
do? > 0.

Similarly, assuming the convexity of log"~tlg(c) with respect to
o, we can show that loglnlg (5) will also be a convex function of ¢ for all
large . This proves Lemma 1.

It is known [9] that log I5(s) is a convex function of . Hence
log M3(s) = loglP~1)I5(c) is also a convex function of ¢ (6>60).

COROLLARY. If log g(s) is an indefinitely increasing convex fune-
tion of log (g) (6>>060), then logltlg (o) is also an indefinitely increasing
convex function of 5 for 6>>6,, where n is a positive integer.

This corollary may be proved in a way similar to above lemma.
LEMMA 2. Mj(c) /ms,.(c) is an increasing function of ¢ for large c.
PROOF. We have

d[(logla-11o)*My(c)]  k(logla—'lo)k—"Ms(c)+M's(c)(logl 410} <A q_,1(5)
d[(logta~tle)ms,,(c)] Ms(o) (loglda~tlg)k '

=k 4 ﬁ,[l—:;g;— A’[q_ll(G),

which increases as ¢ increases, since log Mg (o) is an increasing convex
function of ¢. Hence Lemma 2 follows

PROOF OF THEOREM 2. Since

d Ms(s) ) 1
1 — — 2 k) —,
do { log m3.(0) } ( ms, (o) Ata_i(0)
therefore,
o dx
2.6) 1 -1 =| N Aen®
( ) Og ms’k(c) Og ms,k(co) J‘Go 8,1{ (X) A[q_l](x)
where
M;(x)
2.7) N5, (x) = —— -
(2.7) Nilx) - mg,(x)

By last lemma Nj,, (o) increases with ¢, Hence we have



160 G.S. SRIVASTAVA AND N. KUMAR

log m,y(0)-log my,y(50) < N(o) (log! tlg-loglalsy).
Thus, using Theorem 1, we get

2.8) lim S0P loghtims, (o)  ® L - sup logNy,(o)

inf  logldlg T 5o oo inf  logldls

c*—> 00
Again, from (2.6), we get
t

dx
log m3  (t)-log msj, > [ N;, (%) ——F——
g k() g k(GO) . S,k( ) A[q,_l](X)

= Ns,(o) log 2,
where
t = expla-21 { (logla-21g)2},
which gives

. sup log N3, (o) P
(2.9) llm inf W < .

G— 00 A

(2.7) implies

(210) lim P 108 Rowlo) _ - sup log (Mxlo) /ms, (o)
6 O inf logtdls 5 00 inf logldlg

Combining (2.8), (2.9) and (2.10), we get (2.4).
This proves Theorem 2.

REMARKS (v) For index pair (2,0) and 3¢Z, this theorem is due
to Gupta and Shakti Bala ( [5], Th. 2).

(vi) Theorem 2 was also proved by Kamthan ([8]. Th. 2) for
3 = 2 and (p,q) = (2,0) under certain restriction on the coefficients.

Thus Theorem 2 generalizes and improves upon the results in

[5] and [8].
THEOREM 3. If 0 <2, p < o0 is satisfied, them
(2.11) log My(s) ~ log mj,,(5) as o co.
PROOF. Let 0 <}, p<co. From (2.4), for arbitrary ¢>0 and all

6 >0, We have
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(2—¢) loglals < (log M;s(s)-log mg ,(5) ) <(p—]~s)‘*‘\10g[q]0-_
This implies

lim log Mjs(s)

—_ o =1 .
G—> 0 IOg msak(c)

in view of Theorem 1. Thus Theorem 3 follows.

REMARK. (vii) In particular for index pair (2,0) and 3¢Z., Theo-
rem 3 was proved by Gupta and Shakti Bala ([5], p.34) and Bajpai
([2]- p. 32] seperately.

THEOREM 4. Let f (s) be an entire function of (p,q)-order o and
lower (p.q)—order . Then

2.12) lim 5P log[m's, (o) /ms,(o)] _ °
) inf log[(ﬂg %

9
G 00

where, m’s, () is the derivative of ms ,(5) with respect to g.
Proof of this theorem requires the following lemma.

LEMMA 3. log ms,,(5) is an increasing convex function of logltls
fOr G > Go-

PROOF. We have

d(logmy,(0)) _ Ma(o)kmy,(0) _  Ms(s) _
d(logl1o) m3,,(0) mao)

which increases, since from Lemma 2, Ms,,(5) /ms,(c) is an increasing
function of ¢ (5>>6,). This implies that

d*(log ms, (o) )
d*(logldls)

> 0 for 6>050. Hence Lemma 3 follows.

REMARK (viii) If we take (p,q) = (2,0), 8 = 2 and 0 <k < 0 in
Lemma 3 then Theorem 1 of [6] follows.

PROOF OF THEOREM 4. Lemma 3 implies that log mg (o) is dif-
ferentiable almost everywhere with an increasing derivative, may be
written as
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° m,Bak(X) dx

s O > Go
o mg, (x) Arq_1)(x) ’

log ms,(a) = 0 (1) -+ j

or,

1 0(1 '5d0) ogtalg,
og ms,(c) < 0(1) + 5.4 (0) ogldls

which on using Theorem 1 gives

sup logl2lmg,, (o) P

(2.13) lim . 08" M8\
6> 00 inf loglalg N
— lLim S log [m's,(o)ms (o) |
T s> 00 inf loglals

Further, for t = exp[q_ﬂ{ (log[q—Z]G)Z} we have

R
’ dx
log ms . (t) = log m ~|~J m’s,, (%)
g ms,(t) g ms, (o) , W) Ara-1(x)

m’s,k(c)

>
ms,k(G)

log 2.

Since logld)s ~ logld}t as 5> oo, therefore after some manipulations,
above inequality gives

@14) lim P log [M'a(0) jma, (o) ] P
inf loglalg 5

6 ©
On combining (2.13) and (2.14) we get (2.12).

REMARKS (ix). if we take § and k as in Remark (viii) then for
index pair (2,0), (2.12) leads to a result; which was proved, respectively,
by Agarwal ( [1], Th. 1), and by Juneja ( [6], p- 312) under the condi-
tion that D = 0.

(x) For (p,q) = (2,1), 0 <k < o0 and D = 0 Theorem 4 was proved by
Vaish ( [10], )h. 3).
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THEOREM 5. Let fi(s) = > aynexp (shin) (i = 12) be two
. n=1
entire functions of (p,q)-orders piand lower (p,q)—orders 2;, respectively.
Then if
(i) logl2lm;,, () ~ log [ {log ms,(a:f1) } {log ms,(of) } 1,

the function f(s) = Z anexp (shn) will be of (p,q)—order p and lower

n=1
(p.q)—order A such that
(2.15) ot 0> =t A
and if

(i) loglzlmg, (o) = [ {loglzlms, (s, £,] } {loglzlms, (o.f) } 1Y%
then

(2.16) (p,0,) *=p =2 = (A 1)2,

where mg, (6) and mj,,(s.f;) are mean values of f (s) and fi(s), respecti-
vely.

PROOF. Applying Theorem 1 to the functions f,(s) and f,(s), we get

logl#ma,,(o.£:) ‘
(2.17) Toglaly < o, + 5
and

logl2lmg, (5.f,) e
(2-18) IOg[‘”c 2 + _2“ »

for an arbitrary £>0 and ¢ >go.

Adding (2.17) and (2.18).we have

(2.19) 108 [log m3,(.£) log my, (o:f;)]

loglals < oyt et e

Similarly, on proceeding for the limit inferior, we obtain

(2.20) 198_[1og m3, () log my, (o) ]

Togldls > Mt Al
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If hypothesis (i) holds, then from (2.19) and (2.20), we get

log?Imyg,, (c)

MF e < log[Q]c

< pit et &
for any ¢>0 and sufficiently large . Proceeding to the limits as ¢ — oo,
it leads to (2.15).

Similarly, on multiplying (2.17) and (2.18) and then using hypot-
hesis (ii) in place of (i), we get (2.16).

COROLLARY. If functions f,(s) and fy(s) are of regular (p.q)-
growth, then f (s) will also be of regular (p,q)-growth such that
o= pit e

REMARKS (xi). If we take 3,k and (p,q) same as in Remark (viii)
then Theorem 5 is due to Agarwal ( [1], Th. 2).

(xii). If we take (p,q), k and D same as in Remark (x) then Theorem 2
due to Vaish [10] follows from Theorem 5.

THEOREM 6. If in Theorem 5, hypothesis (i) is replaced by

m,S)k(c)

mg)k(c)

o | Walo) may(ot) |
B m 5, (c.f1) m 5,,(c.f,) y’

(ia) log 3
then, we have

ot e=p=2=n+ 1,
And if hypothesis (ii) of Theorem 5 is replaced by

. m’s, (6) m's, (oof1) m's, (of) 11}
(ua) logé N [ l % mg;k G’fl) %log g msykk(c’f;) 5]

m 8’k

then
(0,02 p = A 2= (A )2

PROOF. Instead of making use of Theorem 1, we use Theorem 4
for f,(s) and f,(s) and then proceed as in the proof of Theorem 5, and the
results follow.
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THEOREM 7. Both the results of Theorem 5 hold if the conditions
(i) and (ii) of Theorem 6 are replaced by

. { M;s(o) g M;(o.t,) Ms(o.f1)
ib) log) 2%l L1, 3(o:t,) Ms(o,
( ) & mB’k(G) 8 C mssk(c7f2) ms,k(d’fl)
and

1
.. . M3(0) é % Ms(c,f)g g My(s.£,) % 3
b g O] [ g e | (M) | ]
(u) ¢ . mS,k(O') Og\ mgak(c’fl) g { mS)k(G’fZ) ”
respectively.

PROOF. This theorem can be proved using Theorem 2 on the lines
of the Theorem 5.

NOTE (1). Corollary after Theorem 5 also holds for Theorems 6
and 7,

(2) Theorems 5, 6 and 7 may be easily extended to any finite num-
ber of entire functions.
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