COMMUNICATIONS

DE LA FACULTÉ DES SCIENCES DE L'UNIVERSITÉ D'ANKARA

Série A_{1} : Mathematique

ON CERTAIN FUNCTIONAL EQUATION HAVING SOLUTION IN THE SPACES $\Gamma_{(p, q)}(\rho)$ AND $\Gamma_{(p, q)}(\rho, T)$ OF ENTIRE FUNCTIONS

By
P.D. SRIVASTAVA

7

Faculté des Sciences de l'Université d'Ankara
Ankara, Turquie

Communications de la Faculté des Sciences
de l'Université d'Ankara
Comité de Redaction de la Série A_{1}
C. Uluçay, H. H. Hacisalihoğla, C. Kart
Secrétaire de Publication
Ö. Çakar

La Revue "Communications de la Faculté des Sciences de l'Université d'Ankara" est un organe de publication englobant toutes les diciplines scientifique représentées à la Faculté des Sciences de l'Université d'Ankara.

La Revue, jusqu'à 1975 à l'exception des tomes I, II, III etait composé de trois séries

Séric A: Mathématiques, Physique et Astronomie,
Série B: Chimie,
Série C: Sciences Naturelles.
A partir de 1975 la Revue comprend sept séries:
Série A_{1} : Mathématiques,
Série A_{2} : Physique,
Série A_{3} : Astronomie,
Série B: Chimie,
Série C_{1} : Géologie,
Série C_{2} : Botanique,
Série C_{3} : Zoologie.
A partir de 1983 les séries de C_{2} Botanique et C_{3} Zoologie on été réunies sous la seule série Biologie C et les numéros de Tome commencerons par le numéro 1.

En principe, la Revue est réservée aux mémories originaux des membres de la Faculté des Sciences de l'Université d'Ankara. Elle accepte cependant, dans la mesure de la place disponible les communications des auteurs étrangers. Les langues Allemande, Anglaise et Française seraient acceptées indifféremment. Tout article doit être accompagnés d'un résumé.

Les article soumis pour publications doivent être remis en trois exemplaires dactylographiés et ne pas dépasser 25 pages des Communications, les dessins et figuers portes sur les feulles séparées devant pouvoir être reproduits sans modifications.

Les auteurs reçoivent 25 extrais sans couverture.
l'Adresse : Dergi Yayın Sekreteri, Ankara Üniversitesi, Fen Fakültesi, Beşevler-Ankara TURQUIE

ON CERTAIN FUNCTIONAL EQUATION HAVING SOLUTION IN THE SPACES $\Gamma_{(p, q)}(\rho)$ AND $\Gamma_{(p, q)}(\rho, T)$ OF ENTIRE FUNCTIONS

P. D. SRIVASTAVA

Department of Mahematics Indian Institate of Technology Kharagpur-721302, India.
(Received July 5, 1984: Accepted Jane 26, 1085).

ABSTRACT:
Using functional analysis techniques, it is shown that the functional equation

$$
f\left(z+w_{1}\right)-\beta f(z)=g(z)
$$

always has a solution in the spaces $\Gamma_{(p, q)}(\rho)$ and $\Gamma_{(p, q)}(\rho, T)$ to which g belongs. It is also shown that these spaces are Montel. The results of this paper generalize the corresponding results of Whittaker [10], Scott [8] and Krishatamucthy [5].

1. Whittaker's [10] classical theorem states that for any entire function g of order ρ there exists an entire function f of the same order such that the equation

$$
\begin{equation*}
\mathbf{f}(\mathrm{z}+\mathrm{w})-\mathbf{f}(\mathrm{z})=\mathrm{g}(\mathrm{z}) \tag{1.1}
\end{equation*}
$$

is satisfied for all complex number z, where w stands for any fixed nonzero complex number. This results is further improved and extended by Scott [8] to the case of entire functions of order ρ and type T. Later on, Krishnamurthy [5], using functional analysis techniques, generalizes this result for the spaces $\Gamma(\rho, T), \Gamma(\rho)$ and others where $\Gamma(\rho, T)$ denotes the space of all entire functions having growth $\{\rho . T\}$ and $\Gamma(\rho)$ represents the space of all entire functions of order not exceeding ρ. Thecently, Juneja and Srivastava [2,9] studied the spaces of entire functions of (p, q) order p as well as of (p, q) growth (p, T), in detail, which generalize the spaces $\Gamma(\rho)$ and $\Gamma(\rho, T)$ studied by Krishnamurthy. It is, therefore, natural to study the functional equation (1.1), in a more general form, in these new spaces. This is the purpose of the present paper which is in continuation of our previous work [2,9].
2. This section deals with a brief introduction of the spaces $\Gamma_{(p, q)}(\rho)$ and $\Gamma_{(p, q)}(\rho, T)$ studied by Juneja and Srivastava $[2,9]$.

Let ($\left.\Gamma_{(p, q)}(p), d\right)$ represents the space of all entire functions (including constants) whose index pair does not exceed ($p . q$) and whose (p, q) order does not exceed ρ if f index pair (p, q), where d is the metric topology defined on $\Gamma_{(p, q)}(\rho)$ which is generated by the family of norms $\{\|f: p+\delta\|, \delta>0)\}$. Any element $f(z)=\sum_{n} a_{n} z^{z^{n}} \in \Gamma_{(p, q)}(\rho)$ is characterized by the Equation
(2.1) $\left.\lim _{\mathrm{r} \rightarrow \infty} \sup \left\{(\log [\mathrm{p}] \mathrm{M}(\mathrm{r}, \mathrm{f})) / \log { }^{[q]}\right]_{r}\right\} \leq \rho$ or equivalently
(2.2) $\left|\mathrm{a}_{\mathrm{n}}\right|^{1 / \mathrm{n}} \operatorname{cxp}{ }^{[q-1]}\left(\log { }^{[\mathrm{p}-2] \lambda_{n}}\right)^{1 /\left(\rho+\delta^{-A}\right)} \rightarrow 0$ as $\mathbf{n} \rightarrow \infty$ for every $\delta>0$,
where $\mathbf{A}= \begin{cases}1 & \text { tor }(\mathbf{p}, \mathrm{q})=(2,2) \\ 0 & \text { otherwise }\end{cases}$

$$
M(r, f)=\max |f(z)|
$$

$$
|\mathbf{z}|=\mathbf{r}
$$

The norm $\|f ; p+\delta\|$ on it is defined as
(2.3) $\|f ; p+\delta\|=\Sigma_{n}\left|a_{n}\right| \exp \left(n \exp { }^{[q-2]}\left(\log { }^{[p-2]} \lambda_{n}\right)^{1 /\left(\rho+\delta^{-A}\right)}\right)$ where for $\mathrm{m}=0, \mathrm{l}, 2, \ldots$

$$
\exp ^{[m]} x=\exp \left(\exp ^{[m-1]} x\right), \exp ^{[-m]} x=\log ^{[m]} x, \log ^{[0]} x=x
$$

and $\lambda_{n}=\left\{\begin{array}{l}\mathbf{N}_{0} \text { for } 0 \leq \mathbf{n} \leq \mathbf{N}_{0} \\ \mathrm{p} \text { for } \mathrm{n}>\mathbf{N}_{0}\end{array} ; \mathrm{N}_{0}=\left[\exp ^{[p-3]} 1\right]+1\right.$
(Note -- \sum_{n} stands for $\sum_{n=0}^{\infty}$ throughout. For the definitions of index pair, (p, q) order, (p, q) growth etc., see $[3,4]$).

Let $\left(\Gamma_{(p, q)}(\rho, T), d^{\circ}\right)$ represents the space of all entire Lunctions (including constants) which are either of index pair less than (p, q) or are of (p, q) growth $\{p, T\}$, where d^{0} is the metric topology defined on $\Gamma_{(p, q)}(\rho, T)$ which is generated by the family of norms $\{\|f, \rho, T+\delta\|$, $\delta>0\}$. Any element $f(z)=\Sigma_{n} a_{n} z^{n} \in \Gamma_{(p, q)}(\rho, T)$ is characterized by the equation
(2.4) $\lim _{r \rightarrow \infty} \sup \left\{\left(\log [p-1] M(r, f) /\left(\log ^{[q-1]} r\right) \rho\right\} \leq T\right.$ or equivelently
(2.5) $\left|a_{n}\right|^{1 / n} \exp ^{[q-1]}\left(\frac{\mathbf{M}_{1}}{T+\delta} \log [p-2] \lambda_{n}\right)^{1 /(p-A)} \rightarrow 0$ as $n \rightarrow \infty$ for every
(2.6) $M_{1} \equiv M_{1}(p, q)= \begin{cases}1 & \text { if } p \geq 3 \\ 1 / \varepsilon p & \text { if }(p, q)=(2,1) \\ \frac{(\rho-1) \rho^{-1}}{\rho^{\rho}} & \text { if }(p, q)=(2,2)\end{cases}$

The norm $\|f, \rho, T+c\|$ on it is dofined as

$$
\begin{equation*}
\|f, \rho, \mathbf{T}+\delta\|={\underset{\mathrm{n}}{ }}\left|\mathbf{a}_{\mathrm{n}}\right| \exp \left(\mathrm{n} \exp \mathrm{e}^{[\mathrm{q}-2]}\left(\frac{\mathbf{M}_{1}}{\mathbf{T}+\delta} \log [0-2] \lambda_{\mathrm{n}}\right)^{1 /(\rho-\mathrm{A})}\right. \tag{2.7}
\end{equation*}
$$ where λ_{n} and A are defined as above.

Characterization of continuous linear functionals and the convergence criteria in these spaces have also been obtained [2, 9], In fact, it is shown that

Theorem 2.1 (a) Every continuous lincar functional Ψ defined on $\Gamma_{(p, q)}(\rho)$ is of the form $\Psi(f)=\sum_{n} c_{n} a_{n}, f(z) \sum_{n} a_{n} Z^{n} \in \Gamma_{(p, q)}(\rho)$ wher ${ }^{n}$
(2.8) $\lim _{n \rightarrow \infty} \sup \left|\mathbf{c}_{n}\right|^{1 / n} \exp \left\{-\exp \left[{ }^{q-2]}\left(\log ^{[p-2]} \lambda_{n}\right)^{1 / p^{-\delta}+\mathrm{A}}\right\}<1\right.$ for some $\delta>0$, and conversely.
(b) Every continuous linear functional Ψ defined on $\Gamma_{(p, q)}(\rho, T)$ is of the form $\Psi(f)=\sum_{n} c_{n} a_{n}, f(z)=\sum_{n} a_{n}{ }_{n} \bar{z}^{n} \in \Gamma_{(p, q)}(\rho, T)$ where
(2.9) $\lim _{\mathrm{n} \rightarrow \infty} \sup \frac{\left(\log [q-1]\left|c_{n}\right| 1 / n\right)(\rho-A)}{\log ^{[D-2] \lambda_{\mathrm{n}}}}<\frac{\mathrm{M}_{1}}{\mathrm{~T}}$, and conversely.

Theorem 2.2 Convergence in ($\left.\Gamma_{(p, q)}(\rho), d\right)$ and $\left(\Gamma_{(p, q)}(\rho, T), d^{0}\right)$ are equivalent to uniform convergence over compact subset of $D_{a}=\{\mathrm{z}:|\mathrm{z}|>\mathrm{a}\}$ relative to the function $\exp \left(\int_{a}^{|z|} \frac{\left.\exp ^{[p-2](\log [q-1]} t\right) \rho+\delta}{t} d t\right)$ and $\left.\exp _{a} \int^{|\mathrm{z}|} \frac{\exp ^{[\mathrm{p}-2]}\left((\mathrm{T}+\delta) \log { }^{[\mathrm{q}-1]} \mathrm{t}\right) \rho}{\mathrm{t}} \mathrm{dt}\right)$ respectively
for each $\delta>0$ where $a=\max \left(1, \exp ^{[q-2]} 1\right)$

Theorem 2.3 Convergence in ($\left.\Gamma_{(p, q)}(\rho), d\right)$ and $\left(\Gamma_{(p, q)}(\rho, T), d^{0}\right)$ are equivalent to the convergence in nommed spaces ($\Gamma_{(p, q)}(\rho),\|, \rho+\delta\|$ and $\left(\Gamma_{(\mathrm{p}, \mathrm{q})}(\rho, \mathrm{T}),\|, \rho, \mathrm{T}+\delta\|\right.$ respectively for each $\delta>0$.

Now we state few well knowa results.
Lemma 2.1 [7; pp. 22]: The followisg two propertics of a set Ein a topological vector space are equivalent: (a) E is bounded (b) If $\left\{x_{n}\right\}$ is a sequence in E and $\left\{t_{n}\right\}$ is a sequence of complex number Ψ such that $\mathrm{t}_{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$, then $\mathrm{t}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.

Lemma 2.2 [7: pp 68]: In a locally convex space X, every weakly bounded sot is stroagly bounded.

Lemma 2.3 [6; pp. 41]: A subset X_{2} of a complete metric space X is relatively compact if and only if X contains finite ε-net for the set X_{2} for arbitrafy $\varepsilon>0$.
3. In this section, we prove that the spaces ($\Gamma_{(p, q)}(\rho)$, $\left.d\right)$ and $\left(\Gamma_{(p, q)}(\rho, T), d^{0}\right)$ are Montel. First we prove

Theorem 3.1 Let $\mathrm{E} \subset \Gamma_{(\rho, q)}(\rho)$ and $f(z)=\Sigma_{n} a_{n} z^{n}$ be an arbitrary element in E. Then E is bounded if and only if
(3.1) the scquence $\left\{a_{n}\right\}$ is bounded, uniformiy for all $f \in E$, and
(3.2) given $\varepsilon>0$, whatover may be $f \in \mathbb{E}$, for each $\delta>0$, there exists $\mathrm{n}_{0}(\varepsilon, \delta)$ such that

$$
\left.\left|a_{n}\right|^{1 / n} \exp ^{[q-1]}\left(\log g^{[p-2] \lambda_{n}}\right)^{1 /(\rho+\delta-A}\right) \leq \varepsilon \text { for } n \geq n_{0}
$$

Proof (Sufficient Part) La virtue of Lemmas 2.1 and 2.2, it is sufficient to show that if $f_{p}(z)=\sum_{n} a_{n}(p) e^{n}$ is an arbitrary sequence in E and $\left\{t_{p}\right\}$ is a sequence of complex number such that $t_{p} \rightarrow 0$, then $\Psi^{p}\left(t_{p} f_{p}\right) \rightarrow 0$ as $p \rightarrow \infty$ for all continuous linear functional Ψ on $\Gamma_{(p, q)}(\rho)$. Because of Theorem $2.1(a), \Psi\left(t_{p} f_{p}\right)=\sum_{n} t_{p} a_{n}(p) c_{n}$ where $\left\{c_{n}\right\}$ satisfied (2.8). By (2.8), given $\eta>1$ there exitss $\mathbf{n}_{1}(\eta)$ such that for some $\delta=\delta_{1}$

$$
\begin{equation*}
\left|c_{\mathrm{n}}\right|^{1 / \mathrm{n}_{\exp }}\left\{-\exp ^{[q-2]\left(\log g^{[p-2] \lambda_{\mathrm{n}}}\right)^{1 /\left(\rho+\delta_{1}-\mathrm{A}\right)}}\right\} \leq \frac{1}{\eta} \text { for } \mathbf{n} \geq \mathbf{n}_{1} \tag{3.3}
\end{equation*}
$$

However, by (3.2), given $\varepsilon(0<\varepsilon<\eta)$ and $\delta=\delta_{1}$, there exists $n_{0}\left(\varepsilon, \delta_{1}\right)$, independent of p, such that
(3.4) $\left|a_{n}{ }^{(p)}\right|^{1 / n_{\exp }}{ }^{[q-1]}\left(\operatorname{llog}\left[\rho^{[p-2]} \lambda_{n}\right)^{1 /\left(\rho+\delta_{1}-A\right)} \leq \varepsilon\right.$ for $n \geq n_{0}$.

Choose $\mathrm{N}=\max \left(\mathrm{n}_{0}, \mathrm{n}_{1}\right)$. In virture of Eq. (3.1), (3.3) and (3.4), it follows that $\sum_{n}\left|a_{n}{ }^{(p)} c_{n}\right|$ is bounded, the bound being independent of p. Thus $\left|\Psi\left(t_{p} f_{p}\right)\right| \leq \eta_{1}\left|t_{p}\right| \rightarrow 0$ as $p \rightarrow \infty$ for every Ψ. So E is bounded.
(Necessary Part) Suppose E is bounded in $\left(\Gamma_{(p, q)}(\rho)\right.$, d) so for every $\delta>0$, the norm fi, $p+\delta \|$ is bounded because of the result $[7$, Thoorem $1.37 \mathrm{pp} 26$.$] where f \in E$. So fixiag o, we have $\left|a_{0}\right|+\sum_{n=1}^{\infty}\left|a_{n}\right| \exp \left(n \exp { }^{[\alpha-2]}\left(\log [p-2] \lambda_{n}\right)^{1 /\left(p+\delta^{-A}\right)}\right) \leq \eta_{2}$ for all $f(z)=\sum_{n} a_{n} z^{n} \in E$. This immediately iopplies that $\left\{a_{n}\right\}$ is uniformly bounded for all $f \in E$.

Now, suppose (3.2) fails to hold. Then, for a given $\varepsilon>0$ and some δ_{0}, these exists a sequence $\left\{f_{p}\right\}_{p=1}^{\infty}$ of E,
$f_{p}(z)=\sum_{n} a_{n}{ }^{(p)} z^{n}$ and a corresponding sequence of positive integers $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots .\left(\mathrm{n}_{1}<\mathrm{n}_{2}<\ldots\right.$) such that
(3.5) $\left|a_{n_{p}}{ }^{(p)}\right|{ }^{1 / n p} \exp ^{[q-1]}\left(\log ^{[p-2]} \lambda_{n p}\right)^{1 /\left(p+\delta_{0}-\Lambda\right)}>\varepsilon, p=1,2, \ldots$ clearly (3.6) $\mathrm{p} \leq \mathrm{n}_{\mathrm{p}}$. Define
(3.7) $c_{n}=\left\{\begin{array}{l}0 \text { for } n \neq n_{1}, n_{2} \ldots \\ \frac{p}{\left|a_{n}{ }^{(p)}\right| \operatorname{sgn}\left(a_{n}{ }^{(p)}\right)} \text { for } n=n_{p}, p=1,2 \quad \ldots .\end{array}\right.$

Consider, for $\delta<\delta_{0}$
$\lim _{n \rightarrow \infty} \frac{\left|\varsigma_{n}\right| 1 / n}{\exp ^{[q-1]}\left(\log g^{\left.[p-2] \lambda_{n}\right)^{1 /\left(\rho+\delta^{-A}\right)}}\right.}$ which is zero because of (3.5), (3.6) and (3.7). This implies, because of Theorem 2.1 (a), that Ψ defined by $\Psi(f)=\sum_{n} c_{n} a_{n}$ is a continuous linear functional de-
fined on $\Gamma_{(p, q)}(\rho)$. Choose $t_{p}=\frac{1}{p}$, so it goes to zero as $p \rightarrow \infty$ but

$$
\Psi\left(t_{p} f_{p}\right)=\sum_{n} t_{p} c_{n} a_{n}(p)=t_{p} \sum_{n} c_{n} a_{n}(p) \geq t_{p} c_{n_{p}} a_{n}(p)=1
$$

does not tend to zero as $p \rightarrow \infty$. This implies E is not weakly bounded and so not strongly bounded. Hence a contradiction to the nypothesis completes the proof.

Remark 3.1 The corresponding theorem for the space $\Gamma_{(p, q)}(\rho, T)$ can be obtained of we replace the condition (3.2) ly.
(3.8) Given $\varepsilon>0$, whatever may be $f \in \mathrm{E} \subset \Gamma_{(\mathrm{p}, \mathrm{q})}(\rho, \mathrm{T})$, for each $\delta>0$, there exists $n_{0}(\varepsilon, \delta)$ such that

$$
\left\lvert\, a_{n} i^{1 / n} \exp ^{[q-1]}\left(\frac{M_{1}}{T+\delta} \log ^{[p-2] \lambda_{n}}\right)^{1 /(p-A)} \leq \varepsilon\right. \text { for } n \geq n_{0}
$$

The proof runs on the same lines.
Lemma 3.1 (a) Let E be a beunded set in $\left(\Gamma_{(p, q)}(\rho)\right.$, d), then given $\varepsilon>0$ there exists, for each $\delta>0$, an $n_{2}(\varepsilon, \delta)$ such that for whatever may be $f(\mathrm{z})=\sum_{\mathrm{n}} \mathrm{a}_{\mathrm{n}} \mathrm{z}^{\mathrm{n}} \in \mathrm{E} \subset \Gamma_{(\mathrm{p}, \mathrm{q})}(\rho)$

$$
\left\|\sum_{n=n_{2}}^{\infty} a_{n} z^{n}, \quad \rho+\delta\right\|<\varepsilon
$$

(b) Let E be a bounded set in $\left(\Gamma_{(p, q)}(\rho . T)\right.$, $\left.d^{\circ}\right)$, then given $\varepsilon>0$ there exists, for each $\delta>0$, an $\mathrm{n}_{2}(\varepsilon, \delta)$ such that for whatever may be $\mathrm{f}(\mathrm{z})=\sum_{\mathrm{n}} \mathrm{a}_{\mathrm{n}} \mathbf{z}^{\mathrm{n}} \in \mathrm{E}$

$$
\left\|\sum_{n=n 2}^{\infty} a_{n} z^{n}, \rho, T+\delta\right\|<\varepsilon .
$$

The proof follows from Theorem 3.1 so we omit it.
Now, we have main theorem of this section.
Theorem 2.2 The spaces $\left(\Gamma_{(p, q)}(\rho), d\right)$ and $\left(\Gamma_{(p, q)}(\rho, T), d^{o}\right)$ are Montel spaces. In other words, they are barrelled spaces in which every bounded set is relatively compact.

Proof. Since these spaces are Frechet so are barrelled. It is now remained to show that every bounded set E in these spaces is relatively compact. But by Lemma 2,3, it is enough to show that these spaces contain, for arbitrary $\varepsilon>0$, a finite ε-net for the subset E of the space in question.

For this, assume E is a bounded subset of the space in question and α be a metric on E. Let $f=\sum_{n} a_{n} c_{n} \in E$ where $e_{n}(z)=z^{n}$ for $n=$ $0,1,2 \ldots$, Define $S=\left\{f_{1}=\sum_{n=0}^{n_{0}-1} a_{n} e_{n}\right.$ such that $\alpha\left(\sum_{n=n_{0}}^{\infty} a_{n} e_{n}, 0\right)$ $<\varepsilon / 2\}$.

This is possible because of the Lemma 3.1 and the Theorem 2.3. Clearly S is finite dimensional set with bases $e_{0}, e_{1}, \ldots, e_{n o}-1$ and also bounded. So S is compact. Therefore there exists an $\frac{\varepsilon}{2}$ net in S which is obviously an ε-net for the whole of E, because, if $f=\sum_{n} a_{n} e_{n} \in E$ and $f_{1}=\sum_{n=0}^{n o-1} a_{n} e_{n} \in S$ then for some g in the $\frac{\varepsilon}{2}$ net for S, we have

$$
\begin{aligned}
& \alpha\left(\mathbf{f}_{1}-\mathrm{g}, 0\right)<\varepsilon / 2 . \text { So } \\
& \alpha(\mathbf{f}-\mathrm{g}, 0) \leq \alpha\left(\mathbf{f}-\mathrm{f}_{1}, 0\right)+\alpha\left(\mathrm{f}_{1}-\mathrm{g}, 0\right)<\varepsilon
\end{aligned}
$$

This completes the proof.
4. In this section we give few lemmas which are used in the final section. First ve have

Lemma 4.1 If B is a continuous linear endomorphism of any one of the spaces $\left(\Gamma_{(p, q)}(\rho), d\right)$ and $\left(\Gamma_{(p, q)}(\rho, T), d^{\circ}\right)$, then $U=B-\beta I$, where β is any nonzero complex number and I is the identity transformation, maps bounded closed sets onto elosed stts.

Proof. Let K denote any one of the space under consideration and suppose E is a bounded closed set in K. For $f_{n} \in E, n=1,2,3 \ldots$, let $\lim _{n \rightarrow \infty} \mathbb{U}\left(f_{n}\right)=g_{0}$. Since B is continuous and the spaces in question are Montel so it maps bounded set $\left\{f_{n}\right\}$ into a relatively compact set $\left\{B\left(f_{n}\right)\right\}$. Hence there must exist a subsequence $\left\{B\left(\mathrm{fn}_{\mathrm{i}}\right)\right\}$, say, which converges to an element $h_{o} \in \mathbb{K}$ (say). Since $\beta f_{n i}=B\left(f_{n i}\right)-U\left(f_{n i}\right)$, it follows that
$\lim _{i \rightarrow \infty} f_{n i}=\frac{1}{\beta} \quad\left(h_{0}-g_{0}\right) \in E$ as E is closed. Thus $U\left(\frac{h_{0}-g_{0}}{\lambda}\right)=$ $\lim _{i \rightarrow \infty} \mathrm{U}\left(\mathrm{f}_{\mathrm{ni}}\right)=$ go. Hence the lemma. $i \rightarrow \infty$

Using Lemma 4.1, we can easily prove the following Lemma on the same lines as adopted in [1, Theorem 5, pp, 489].

Lemma 4.2 The operator $U=B-\mu I$, where B, β and I have the same meaning as in Lemma 4.1, has a closed range and so is an onto mapping whonever the range is also dense in the space in question.

Lemma 4.3 Let \varnothing_{1} and Ψ_{1} be two positive indefinitely increasing functions such that $\varnothing_{1}(x) / \Psi_{1}(x) \rightarrow 0$ as $x \rightarrow \infty$, then for $m=1,2, \ldots$; $\left(\exp { }^{[\mathrm{m}]} \varnothing_{1}(\mathrm{x})-\exp ^{[\mathrm{m}]} \Psi_{1}(\mathrm{x})\right) \rightarrow-\infty$ as $\mathrm{x} \rightarrow \infty$. The proof is straight forward, hence omitted.
5. (Throughout this section, let K stands for any one of the spaces ($\Gamma_{(p, q(p), d)}$ and ($\left.\Gamma_{(p, q)}(\rho, T), d^{\circ}\right)$).

In this soction, we consider the functional equation

$$
\begin{equation*}
f\left(z+w_{1}\right)-\beta f(z)=g(z) \tag{5.1}
\end{equation*}
$$

where w_{1} and β are any nonzero complex numbers and the entire function $\mathrm{g} \in \mathrm{K}$.

For $f \in \mathcal{K}$, define
(5.2) $\quad\left(\mathbf{B}_{1}(f)\right)(\mathrm{z})=\mathrm{f}\left(\mathrm{z}+\mathrm{w}_{1}\right), \mathrm{z} \in \mathrm{C}$.

Obviously, B_{1} is inear. By equations (2.1) and (2.4), it follows that B_{1} is an endonorphism of K.

We now establish
Theorem 5.1 The operator B_{1} defined by (5.2) is continuous in the topology of K.

Proof. (For the space $\left.\Gamma_{(p, q)}(\rho)\right):$ Let $f_{n} \rightarrow 0$ in $\left(\Gamma_{(p, q)}\right)(\rho)$, $\left.d\right)$ Then, by Theorem 2.2
(5.3) $\left|f_{n}\left(z+w_{1}\right)\right| \exp \left\{-\int_{a}^{\left|z+w_{1}\right|} \frac{\exp ^{[p-2]}\left(\log \left[\alpha^{-1]} \mathrm{t}\right) \mathrm{p}^{+} \delta\right.}{t} \mathrm{dt}\right\} \rightarrow 0$
as $\mathrm{n} \rightarrow \infty$ uniformly in D_{a}, for each $\delta>0$. To show that B_{1} is continuous, we have to prove that
(5.4) $\left|f_{n}\left(\alpha+w_{1}\right)\right| \exp \left\{-\int_{a}^{|z|} \frac{\left.\left.\exp ^{[p-2](\log [a-1]}\right)\right)^{+}+\delta^{\prime}}{t} d t\right\} \rightarrow 0$ as
$\mathrm{n} \rightarrow \infty$ uniformly in D_{a}, for each $\delta^{\prime}>0$. Thus, in order that (5.3) may imply (5.4), we need only to show that for each $\delta<\dot{c}^{\prime}$
(5.5) $I_{0} \equiv \exp \left\{\int_{a}^{\mid z+w 1} \frac{\exp ^{[p-2](\log [q-1] t) p+\delta}}{t} d t\right.$

$$
\left.-\int_{a}^{|z|} \frac{\exp ^{[\mathrm{p}-2]}\left(\log \left[\mathrm{q}^{[1]} \mathrm{t}\right) \rho^{+}+\delta^{\prime}\right.}{t} d t\right\}
$$

is bounded uniformly in D_{a}. Clearly,

$$
I_{0} \leq \exp \left\{\int_{a}^{\left(|z|+\left|w_{1}\right|\right)} \frac{\exp ^{\left[\mathrm{p}^{-2]}\left(\log ^{[\mathrm{q}-1]} \mathrm{t}\right) \mathrm{p}^{+\delta}\right.}}{t} d t-J_{1}\right\}
$$

where $J_{1} \equiv \int_{a}^{|z|} \frac{\left.\exp ^{[p-2](\log [q-1] t}\right) p^{+\delta^{\prime}}}{t} d t$.
Thus

$$
\begin{aligned}
& \left.I_{0} \leq \exp a_{a-\left|w_{1}\right|} \int^{[z \mid} \frac{\left.\exp ^{[p-2](\log [q-1]}\left(t+\left|w_{1}\right|\right)\right) \rho^{+} \delta}{t} d t-J_{1}\right\} \\
& =\exp _{a-\left\lceil w_{1} \mid\right.} \int^{a} \frac{\exp ^{[p-2]}(\log [q-1](t+|w|))^{\rho+\delta}}{t} d t \\
& +\int_{a}^{i z \mid}\left[\frac{\exp ^{[p-2]}\left(\log [q-1]\left(t+\left|w_{1}\right|\right)\right) \rho+\delta}{t}-\right. \\
& \left.\left.\frac{\exp ^{[p-2]}\left(\log ^{[q-1]} \mathbf{t}\right) \rho^{+\delta^{\prime}}}{\mathbf{t}}\right] \mathrm{dt}\right\} .
\end{aligned}
$$

Or
(5.6) $I_{0} \leq \exp \left\{\eta+\int_{a}^{|\mathrm{zI}|=r} \frac{J^{0}{ }_{1}(\mathrm{t})}{\mathrm{t}} \mathrm{dt}\right\}$,
where η being a constant and

$$
\left.\mathrm{J}_{1}{ }^{o}(\mathrm{t}) \equiv\left\{\exp { }^{[p-2]}\left(\log [q-1]\left(\mathrm{t}+\left|\mathbf{w}_{1}\right|\right)\right)^{\rho+\delta-\exp }{ }^{[p-2]}\left(\log { }^{[q-1]} \mathbf{t}\right)\right)^{\rho+\delta^{\prime}}\right\}
$$

Let $\varnothing_{1}(\mathrm{r})=\left(\log \left[q^{-1]}\left(\mathrm{r}+\left|\mathrm{w}_{1}\right|\right)\right)^{\rho^{+\delta}}\right.$ and

$$
\Psi_{1}(r)=(\log [q-1] r) p^{+} \delta^{\prime} . \text { Clearly } \frac{\varnothing_{1}(r)}{\Psi_{1}(r)} \rightarrow 0
$$

as $\mathbf{r} \rightarrow \infty$, so ley Lemma 4.3, $\mathrm{J}_{1} \mathrm{o}(\mathrm{r}) \rightarrow-\infty$ as $\mathbf{r} \rightarrow \infty$. Hence, howsoever large $\eta_{1}(>0)$ may be, there exists r_{0} such that for $\boldsymbol{r} \geq \mathrm{r}_{0}, \mathbf{J}_{1}{ }^{\mathrm{o}}(\mathrm{r}) \leq-\eta_{1}$. Therefore, by (5.6)

$$
\begin{aligned}
\mathrm{I}_{0} & \leq \exp \left\{\eta+\eta_{2}-\eta_{1} \int_{\mathrm{r}}^{\mathrm{r}} \frac{\mathrm{dt}}{\mathrm{t}}\right\}, \eta_{2}=\text { constant } \\
& =\exp \left\{\eta+\eta_{2}-\eta_{1} \log \frac{\mathrm{r}}{\mathrm{r}_{0}}\right\}=0 \text { (1), uniformly in } \mathrm{D}_{n} .
\end{aligned}
$$

This completes the proof.
The procf of Theorem 5.1 for $\Gamma_{(p, q)}(p, T)$ is similar and hence omitted.
Next we have
Lemma 5.1 Let U_{1}, defined by $\mathrm{U}_{1}=\mathrm{B}_{1}-\beta I$, be an operator from K to K. Then the range of U_{1} is dense io K.

Proof. Since $\left\{e_{n}\right\}_{n=0}^{\infty}, e_{n}(z)=z^{n}$, is a basis in K so any element $f \in K$ can be expressed as $f=\sum_{n} a_{n} e_{n}$. Now

$$
\left(U_{1}\left(e_{n}\right)\right)(z)=\left(z+w_{1}\right)^{n}-\beta z^{n}=\alpha_{n}(\text { say })
$$

The elements $e_{0}, e_{1}, c_{2} \ldots$ can all be represented as finite linecar combinations of $\left\{\alpha_{n}\right\}$ and so every element $f \in K$ can be uniquely written as
$\mathrm{f}=\sum_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}{ }^{\prime} a_{\mathrm{n}} . \operatorname{Sof}=\sum_{\mathrm{n}} \mathrm{a}^{\prime}{ }_{\mathrm{n}} \mathrm{U}_{\mathrm{l}}\left(\mathrm{e}_{\mathrm{n}}\right)=\lim _{\mathrm{p} \rightarrow \infty} \mathrm{U}_{1}\left(\sum_{\mathrm{n}=\mathrm{o}}^{\mathrm{p}} \mathrm{a}^{\prime}{ }_{\mathrm{n}} \mathrm{e}_{\mathrm{n}}\right)$ which
shows that $\mathrm{U}_{1}(\mathrm{~K})$ is dense in K .
Finally, we have
Theorem 5.2 For every $g \in K$, there exists an $f \in K$ satisfying

$$
f\left(z+w_{1}\right)-\beta f(z)=g(z)
$$

where w_{1} and β are any nonzero complex numbers.
Proof. Theorem 5.1, Lemma 5.1 and Lemma 4.2 give that the mapping $U_{1}=B_{1}-\beta I$ is onto. So for every $g \in K$ there exists f in K such that

$$
\begin{aligned}
\mathbf{U}_{1}(\mathbf{f})=\mathrm{g} & \Rightarrow\left(\left(\mathbf{B}_{1}-\beta I\right) f\right)(\mathrm{z})=g(\mathrm{z}) \text { for every } \mathrm{z} \in \mathrm{C} \\
& \Rightarrow \mathrm{f}\left(\mathrm{z}+\mathrm{w}_{1}\right)-\beta \mathrm{f}(\mathrm{z})=g(\mathrm{z}) .
\end{aligned}
$$

Hence the thecrem.

Remarks 5.1 It is clear that if the entire function g in (5.1) is of ($p q$) -growth $\{p, T\}$ then the solution f of Equation (5.1) must also be of (p, q) growth (ρ, \mathbf{T}). Similar remarks applies if $g \in \Gamma_{(p, q)}(\rho)$.

For $p=2$ and $q=1$ the functional Equation (5.1) has been established by Krishnamurthy [5]. Also for $\beta=1, p=2$ and $q=1$ we get results of Whittaker [10] and Scott [8].

REFERENCES

[1] DUNFORD, N. AND SCHWARTZ, J.T.: Linear Operator I Interscience Publ. Inc. New York, 1957.
[2] JUNEIA, O.P. AND SRIVASTAVA, P.D.: On the space of entire functions of (p, q) order p, comment, Math. Univ. St. Pauli 27-1, 1978, pp. 71-79.
[3] JU.NEJA, O.P., KAPOOR, G.P. AND BAJPAI, S.K.: On the (p, q)-order and lower (p, q) order of an entire function, J. Reine Angew. Math. 282 (1976), pp. 53-67.
[4] ————: On the (p, q) type and lower (p, q)-type of an entire function, ibid, 290 (1977, pp. 180--190.
[5] KRISHNAMURTMY, V.: On the continuous endomorphisms in the spaces of classes of entire functions. Proc. Nat. Acad. Sci. India, Sect. A. 26 (1960), 642-655.
[6] NAIMARK, M.A.: Normed rings, P. Noordhoff N.V., Gottingen, the Netherlands, 1963.
[7] RUDIN, W.: Functional Analysis, Tata MacGrawHill Pub. Co. New Delhi, 1960.
[8] SCOTT, S.: On the asymptotic periods of integral functions, Proc. Cambridge Philos, Soc. 31, (1935), pp. 543-554.
[9] SRIVASTAVA, P.D. AND JUNEJA, O.P.: On the space of a class of entire functions, Communicated.
[10] WHITTAKER, J.M.: Interpolatory function theory, Camb. Math. Tract., No. 33 (1935).

