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ON CERTAIN FUNCTIONAL EQUATION HAVÎNG SOLUTION IN 
THE SPACES r(p,q) (p) AND r(p,q) (p,T) OF ENTİRE FUNCTIONS

P. D. SRIVASTAVA

Department of Mathematics Indian Instilute of Technology Kharagpur-l21302^ India.

(Received July 5, 1984: Acceptcd June 26, 1985),

ABSTRACT;

tJsing functional analysis technigues, it is shown that the functional eguation

f(Z + W;) — (3 f(z) = g(z)

always has a solution in the spaces (p) and r(p_(P,T) to which g helongs. ît is
also sh.own that these spaces are Montel. The results of this paper generalize the corres- 
ponding results of Whittaker [10], Scott [8] and Krishnamurthy [5j.

1. Whıttaker’s [10] classical theorem States that for any entire
function g of order p tkere existg 
such. that the eguation

an entire function f of the same order

(1-1) f(z + w) — f(z) = g(z)

is satisfied for ail coınplex number z, where w stands for anV fixed non- 
zero complex nutnber. This results is further improved and extended by 
ScoİSt [8] to the case of entire functions of order p and type T. Latçr on, 
Krishnamurthy [5], using functional analysis techniques, generalizes 
this result for the spaces r(p,T), r(p) and others tvlıere r(p,T) 
denotes the space of ali entire functions having growth {p.T} and r(p) 
represents the space of ali entire functions of order not exceeding p. Re- 
cently, juneja and Srivastava [2, 9] studied the spaces of entire func
tions of (p,q) order p as well as of (p,q) growth (p,T), in detail, which 
generalize the spaces r(p) and r(p,T) studied by Krishnamurthy. It is, 
therefore, natura! to study the functional equation (lA), in a more ge
neral form, in these new spaces. This is the purpose of the present paper
which is in continuation of our previous work [2, 9].
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2 . This seetion deals rvdth a brief introduetion of the spaces F(p,q)(p) 
and F(p,q)(p,T) studied by Juneja and Srivastava [2, 9].

Let (F(p,q)(p),d) represents the space of ali entire functions (inclu- 
ding constants) whose indcx pair does not exceed (p.q) and whose (p,q) 
order does not exceed p if t f index pair (p,q), \vhere d is the ınetric to-
P®^ogy defined on r(p,q)(p) which is generated by the family of norms
{i|f:p + 5 |[, S>0)}. Any element f(z) = 2 anz“e F(p,q)(p) is charac- 

n
teriged by the Equation

(2 .1) lim. sup j(log[Pl M (r, f)) / log Mir) 
r->“

p or equivalentiy

(2.2) I an 11cxp ti ti (logtP 2]Xn)l/(p+8 0 as n-> oo for everyŞ>0,

where A = 1 for (p,q)
0 otherwise

M (r,f) m.ax I f(z) I

I z 1 = r

The norm ||f; p + S II on İt is defined as

(2'3) l|f; p + 3 II — 2in 1^:‘n
where for m = 0, 1, 2, ..

I exp (n exp[l 2] (logtP 2J Xn)t''(p+S A))

exp[™l exp ^exp[’'P t] x), expt ııl x logt't'l X, logtıl X =

and >ın =
i No for 0 < No

for u > No
; No = [cxp[P-3] 1] + 1

X

n
D

00

(Note — S stands for S throughout. For the definitions of index
n n=o

pair, (p,q) order, (p,q) growth ete., see [3, 4]).

Let (F(p,q)(p,T), d°) represents the space of ali entire l’unctions
(inciuding constants) which are either of index pair less than (p,q) or
are of (p,q) gro’wth )p,T}, where d° is the metric topology defined on 
F(p,q)(p,T) which is generated by the family of norms {Ijf, p, T <5 ||,
S > 0}. Any element f(z) 
equation

Snanz“ e F (p,q)(p,T) is characterized by the
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(2.4) lim sap ^(logfî’ M (r,f) j (logl*! H r)P} < T or equivelentîy

' M
(2.5) |an p/® exp[Pl~l]

T+S
logtP -> 0 as n-^ <X) for every 

§>0

1
l/(?-A)

(2.6) Mı = Mı(p,q) İ
l
1/ ep

pP

if p
if (p,q) = (2,1)

if (p,q) (2,2)

The norm |if, p, T-pS!* on it is defined as

(2 .T) |jf, p, T + S [j = 2 |an I exp (nexpl'l 2]
T+S

logtP 2]X;

■vvhere X„ and A are defined as above.

Characterization of continuous Hnear functioııals and the conver- 
gcnce criteria in these spaoes have also been obtained [2, 9], in fact, 
it is shown that

Theorem 2.1 (a) Every cont,inuous lincar functional T defined on r(p,q)(p)
is of the form T’(f) = S Cn 

n
an, f(-) S 

n
an r(p,q) (p) wher₺

n

3

M

2li

1
O

^1/(P-A)

■V

e

(2.8) lim sup |cn|l''“ exp {-exp 2] (loglP 2] Xn)l^P S+^} 
ıı->“=

1

for some S 0, and conversely.

(b) Every continuous linear functional T* defined on
of the form T'(f) = S Cna,,. f(z) = S •n

(2 .9) lim sup
(İ0gt<l“>l |cn|ı/n)(P~M

II logtP 2İÂ,•Î1

r'<P’q)(P’T) i®
r(p,q)(p,T) wJıere

1 1—jjf—, and conversely.

n n
e

Theorem 2.2 Convcrgence in (r(p,q)(p),d) and (r(p,q)(p,T), d^) are equi- 
valent to uniform convergence över compact subset of

Da = {z : |z[ > a) relative to the function

exp

exp
a.

1^1 expCP 2](log[q ı]t)P+8
dt

exp[P 2İ((Td-8) logtı ‘]t)P

and

dt I respectiveîy
z

t

for each S 0 whcre a — max (1, expt'l ^1 1)
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Theorem 2.3 Convergence in (r(p,q)(p),d) and (r(p,q)(p,T), d°) are equi- 
valent to the convergence in normetl spaces (Ff,; q)(p)’ S •’ t-

(l^(P>q)(P)T), p, T+8 it) respectively for each S>0.
J-o jj) and

Now we State fcw well knowıı results.

Lemma 2.i [7; pp. 22 j: The follo' Lag two properti' s of a set E in a to
poîogical vector space are efjuivalent: (a) E is îtounded (b) If {xn} is
seguence in E .d»ana {ta} İS a seıjuence of compîcx number T’ :uch that
t, cc, then tuKn -

Leiîima 2.2 [7; pp 68] localj coııvex .space X, every weakly bo-
unded set is strongly bounded.

Lemma 2.3 [6; pp. 41 j; A subset 1^2 of complete ııietric space X is
relativeîy compact if and only if X contains finite s-net for tlıc set X2
for arbitrarv•J 0.

3 . In this section, prova that tlıe spaces (Ffpjg) (p),d) and
(r(p,q) (p,T),do) are Montel. First we prove

11 '* b as n

s

a

n a

-> o as n -V

Theorem 3.1 Let E cz r(p,q)(p) and f(z) — 'Sa anZ” be an arbitrary ele
ment in E. Then E is bounded if and only if 

(3 .1) the sequence {anj- is bounded, uniformly for ali f e E, and 

(3 .2) given e > 0, whatever nıay be f e E, for each 8 
no(s, S) such that

10gİP“2jXn)F(p+8 A) g for

0, tbere exists

»o-1 an F f n

Proof (Suffieien Part) la virtue of Leınmas 2.1 and 2.2, itiş sufficient
to sîîow that if fjj(z) = E an(p) zrı is

n
{tp} is a sequence of coîiıplex number such that tp

an. arbitrary sequence in E and

as P-» 00 for ali coutiııuous îinear functional T’ on
► 0, then T (tpfp) -> 0 
rcoig)]?)- Because of

Theorem (a) (tpfp) L tpan(p) 
n

-n where {cn} satisfied (2.8).9. 1

By (2.8), given vj > 1 there exitss nı(7)) such that for some S = Sı

(3.3) |c„| * /'leKp {-exp j(îogtt'^F>,j^)ı/(p+Sı-A)} ---- lor n > nı

Hotvever, by (3.2), given s (0 <; 7]) and o = Sı, there exists
il o (s, 31), indepcndent of P> such that

s
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(3.4) |an<P) |ı/nexpt^ ıJ(llogfP"2^Xn)U(p+Sı < s for no-

Choose N = max (ng.
follows that S 

n

hi). In virture of Eq. (3.1), (3.3) and (3.4), it
ja^lP) Cn I is bounded, bound being independent

ofp. Thus |'i'”(tpfp) I 7] 1 I tp I -> 0 as p 00 for every 'F. So E is bounded.

(Nccessary Part) Suppose E is bounded in (r<p,q)(p)! d) so for
every 0, the norm ijf, p -L 8 is bounded because of the lesult
[7, Theorem 1.37 pp. 26] whers f e E. So fixing o. we have

n

S

|ao| + Z |an| exp (n eiipM (iogtP 2] Xn)'-''p+S A)] fjjr gj]
n=ı

f(z) = s anz"
a

bounded for ali f e E.

e E. This immediately iroplies that (lân) is uniformly

Now, suppose (3.2) fails to hold. Tiıen, for a giveıı s 0 and some

§0, these exists a seguence (fp}
p=ı

of E,

fp(z) = Z aj/P) 
a

nı, nı, .... Ciı <

and a correspouding sequence of positive integers

n2 . . . .) such that

(3 .5) I 3;‘"p (P) [ ı/np expbl ı](log[P 2]Xjjp)i/(p+8q A) p 1,2,... clearly
(3 .6) p :< np . Define

( 0 for n 7^ nı, 512 • • • •

(3 .7) Cn = |an(P) I sgn (an(P)) for n — Dp, p = 1,2

z"

P

Consider, for S < Sp

lim sup 
n “

|cnp/“
exp[<l-ı](Iog[P^2]Xn)ı/(P+S"A) which is zero because of

(3 .5), (3 .6) and (3 .7). This implies, because of Theorem 2.1 (a), that 
T defined by T’’ (f) = Z Cnap is a continuous linear functional de- 

n

fined on r(p,q)(p). Choose tp = ----, so it goes to zero as p -7
P

but

(^p^p) — 2 tp Cnan'P’ — fp Cnap (P) a 21 (P) = 1
n n

P cpp
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does not tend to zero as p -> c<?. Tlıis implies E is not ’vveakly bounded 
ana so not strongiy bounded. Hence 
completes the proof.

a contradiction to the tıypothesis

Remark 3.1 The corresponding theorem for the space r(p,q)(p,T) can be 
obtained of we replace the condition (3.2) by.

(3 .8) Given e 0, vvhatever may be f e E c: E(p,q)(p,T), for each 8 0,
there exists no (s, 8) such that

jaijii/A exp[<l ' I Mı
T+S

logtP for n > no-

The proof runs on th* ame lines.

l/(p-A)
e

Lemma 3.1 (a) Let E be a bounded set in (r(p,q)(p),d), then given s 0
there exists, for each 8 0, an 112 (s, S) such that for vvhatever may be
f(z) = 2 aazu 6 E t= r(p,q)(p) 

n

co

E
n=n2

auz“. p + o

(b) Let E be a bounded set in (r(p,Q)(p.T), d®), then given s > 0
there exİ8ts, for each S 
f(z) = 2 anz” e E 

n

0, an n2 (s, S) such that for vvhatever may be

2
n=ıi3

anz“, p, T + S

The proof follovvs from Theorem 3.1 so we omit it.

Novv, we have main theorem of this section.

Theorem 2.2 The spaces (r(p,q)(p), d) and (r(p,q) (P)T), <b-’) are Montel
spaces. In othcr vıords, they are barrelled spaces in which every boun- 
ded set is relatively compact.

Proof. Since these spaces are Frechet so are barrelled. Itisnovvremained 
to show that every bounded set E in these spaces is relatively compact. 
But by Lem.m.a 2,3, it is enough to show that these spaces contain, for
arbitrary s 0, a finite s -net for the subset E of the space in question.
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For this, assume E is a bounded subset of the space in question and
a be a metric on E, Let f = S apCn £ E where en(z) = z" for n — 

n

0,1,2...., Define S =
Do- 

{fl = S aijCn such that a
n=o

S
n=n o

<£/2}.

This is possible because of the Lemma 3.1 and the Theorem 2.3. 
Clearly S is finite dimensional set with bases eo, eı, ..., eno“l »nd also

bounded. So S is compact. Therefore there exists an net in S

1

which is obviously an s -net for the whole of E, because, if f = S apep 6 E 
n

and fi =
no-1
S 

n=o
anCn e S then for some g in the

2
net for S, we 

2r
have

a(fı—g,0) 

«(f—

: s / 2. So 

a(f~fı,0) + «(fı—g,0) £.

This completes the proof.

4 . In this section we give few lemmas which are used in the final
section. First ve have

Lemma 4.1 Tf B is a continuous Îinear endomorphism of any one of the 
spaces (r(p,q)(p), d) and (r(p,q)(p,T), d”), then U == B —■ !3I, where p 
is any nonzero compîex number and I is the identity transformation, 
maps bounded closed sets onto closed stts.

Proof. Let K danote any one of the space under consideration and sup-
pose E is a bounded closed set in K. For fo e E, n
lim U(fn) = go. Since B is continuous and the spaces in question 

are Montel so it maps bounded set {fo} into a relativeîy compact set
(B(fn)}. Hence there must exist a subseguence {B(fnı)}, say, which
converges to an element hp 6 K (say). Since Ş foı = B(fni) — U{fni), it 
follows that

lim fni
1-»»

(ho:—go) £ E as E is closed. Thu.s U ho—go 
X

= 1,2,3 ...., let

1
K

lim U(fni) = go. Hence the lemma. 
i ->«>
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Using Lemma 4.1, we can easily prove the following Lemma on the sa-
m e lines as adopted İn [1, Theorem 5, pp, 489].

Lemma 4.2 The operatör U = B — p,I, where B, p and I have the same 
m.eaning as in Lemma 4.1, has a closed range and so is an onto mapping 
whcRever the range is also dense in the space in guestion.

Lemma 4.3 Let 0 1 and 'ı'L hc two positive indefinitely increasing func-
tioîis such that 0 ı(x) / Yiİk) 0 as x cc, then for m = 1,2,
(exp[™] 0 ı(x) — exp[’®] T''ı(x)) — oo as x co. The proof is straight
foTivard, hcnce omltted.

5 . (Throughout this seetion, let K stands for any one 
(r(p,q(p),d) and (r(j,,q)(p,T),do)).

of the spaces

In this scctioıı, we consider the functional equation
{î, .1) f(z+wı) -- 8 f(z) = g(z)

where Wı and Ş are any nonzero complex nunıbers and the entire funetion 
g e K.

For f 6 K, define

(5 .2) (B,(f)) f(z + wı), z e C.

Obviously, Bı is linear. By efjuations (2.1) and (2.4), it follotvs tjhat Bj 
is an endomorphism of K.

We now estaldish

Theorem 5.1 The operatör Bı defined by (5.2) is continuous in the to
pology of K.

Proof. (For the space r(p,q)(p)); Let fq 0 in (r(p,q)(p),d) Then, by

Theorem 2.2

(5.3) |fn(z4-Wı) I exp
i Z+vvl 1 expî^î* 2İ (logtQ 1]

aj t
dt 0

as n ->■ oc uniformly in Da, for each S 
ous, we have to prove that

0. To shoAV that Bı is continu-

(5 .4) |f,ı(z4~Wı) I exp
a

|z I exptP 2](log[q ı]t)p+S'

t
dt -> o as
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n > oc uniformly in Da, for each 8'
imply (5.4), we need only to show that for each 8

0. Thus, in order tlıat(5,3) may
8'

(5 .5) lo = exp
I z+wı I expİP 2](log[q ı]t)p+S

a, t
dt

İz 1 expfP ^hlogtl ı]t)P'''8'
t

dt
a

İS bounded uniformly in Da. Clearly,

lo < exp
( |z 1+ lwı I) explP -l(log[p- ılt)p+8

dt - Jı

where Jı =
a.

a,

|z I exp[P 2](^log[q ı]t)p+S'
dt.

Thus

lo < exp
rz r exptP ■2](logW '1(14- |wı dt- Jı

— exp

a—I w

'3. exp[P ^l(logW ıl(t4-|w l))P*S dt
a-Jwpi

d

t

t

t

t

a.

iz r exp[P ^l(loghl ’^(t“)-|wı |))P’^S

exp[P 2](}og[l Ct)p+8'

Or

+

t

t

dt ( .

(5 .6) lo < exp '^l=P JPı(t) 
t

where t; heing a constant and

+ a
dt ,

JıO(t) E= {exp[P"2](log[«-ıl(t+ |wı |))P+S-exp[P-2İ(logi:3-ı]t)P+8'}

Let 0 ı(r) = (logtl^ı^r-l- |wı and

Tı(r) == (logll Or)p+S'. Clearly 0ı(r) 
't'ı(r)

0
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as r -> co, so by Lemma 4.3, Jı'’(r) 
large 7)ı (> 0) may be, there exİ8ts 
Therefore, by (5.6)

to

lo < exp
J'O

co as r 00. Hence, hovscever
such that for r > ro, Jı‘’(r) < — 7)ı.

dt 
t . ->92 coûstant

exp + •'î? — VJl Jog
r
to

o (1), uniformly in D„.

■»^ + ■>'Î2 — 1

-> —

r

This completes tlıe proof.

The proof of Theorem 5.1 for r(p,q)(p,T) is similar and hence oınitted.

Next we have

Lemma 5.1 Let Uı, defined by Uı = Bı — pl, be 
to K. Then the ranee of U 1 is dense in K.

an operatör from K

Proof. Since 611
tn=o

, en(z) = z^, is a hasis in K so any element f e K

can be expressed as f S a^en. NoW 
n

(Uı(en))(z) (z-(-Wı)“ — P «n (say).

The elements <'o, eı, 02 .... can ali be represented as finite lineear combi-
nations of {«n} and so every element f 6 K can be unicjuely written as

f= S an «n. So f = S a'n Uı(eıı) = lim üı
p-»=

P
S 

n==o
a nCn v/hich

z“

n

shows that Uı(K) is dense in K.

Finally, we have

Theorem 5.2 For every g e K, there exists an 

f(z+wı) -- p f(z) = g(z)

f 6 K satisfying

■where Wı and p are any nonzero conaplex numbers.

Proof. Theorem 5.1, Lemma 5.1 and Lemma 4.2 give that the rnapping 
Uı = B1 ■— pi is onto. So for every g e K there exists f in K such that

Uı(f) = g ((Bı-pi)f) (z) g(z) for every ze C

=> f (z + wı) — p f(z) = g{z).

Hence the thecrem.
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Remarks 5.1 It is clear that if the entire funetion g in f5.1) is of (p q) 
-grotvth {p,T} then the solution f of Equation (5.1) must also be of (p,q) 
growth (p,T). Similar rejnarks appiies if g 6 r(p,q)(p).

For p 2 and q = 1 the functional Equatıon (5.1) has been es-
tablished by Krishnamurthy [5]. Aiso for Ş 1, p = 2 and q = 1 we
get results of Whittaker [10] and Scott [8].
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