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ABSTRACT

Let X, X,,... be a sequence of Bernoulli trials governed by a homogeneous third-order
two-state Markov chain. The probabilirty function of S, the number of occurrences in n succes-
sive trials, is obtained. In addition to this, assuming that steady state is already attained the li-
miting function of S is obtained under the condition that nP (X; = 1) = u as n - c. Finally
we can note that this limiting probability function can be generalized in terms of Leguerre poly-

nomials as already shown in the relevant literature.
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INTRODUCTION

It is well known that for the independent Bernoulli sequence, the
limit of the probability function of S, is Poisson with parameter u.
In 1960, Edwards [3] formulated the problem as a Markov chain for
the Bernoulli sequence with a correlation between trials and called
such a sequence of dependent random variables “Markov Bernoulli

sequence”. The unconditional probabilities of this sequence are
PXij=1)=p and PX;=0)=q=1-p for all i=1,2... .

Wang [4] obtained the limiting probability function of S, for
the Bernoulli sequence governed by a first-order two-state Markov
chain, Brainerd and Chang [1] derived the probability .function of
Sy in the case of the second—order Markov chain and Brainerd [2]
obtained the limit of this probability function.

THE DISTRIBUTION OF S, IN THE THIRD-ORDER CASE

Let X;, X,, ... be a Markov Bernoulli sequence governed by a
third—order Markov chain. Denote the unconditional probabilities of

Xi by P(X;j=1)=p, P(X;=0)=q= (1-p) and the conditional
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probabilities by P(X;=0/X;, =1 =0« PX;=0/X;,=1,
Xig= 0=8 PXi=0/X;,=1 Xi,=0 Xjy;=0) =58,
POX; =0/ X, =0 =w, PX;=0/X;,=0 X;,=0)=1
P(X;i =0/ Xi3=0,X;,=0,X;,=0) = sforalli =12 ...

These probabilities are independent of i. In the third—order Markov
chain the following identities can be written immediately:

PXi =0, Xs=1) = P(X;_, =1, X; = 0), )
P(Xis = 0, X, =0, X;=1)=P(X;,=1, X;_;=0,X;=0) (2)
P(Xiy =0, Xip =0, X;; =0, X;=1) = P(X;, =1,

Xj_z = O, Xi‘-l = 0, Xi — O)
Let

(3)

Y = The number of trials to observe the first occurrence of 1,
after i. The conditional probabilities of Y are

PY=0/X;=1)=0,
PY=1/Xi=1)=1-uq,
PY=2/X;=1) = « (1),
PY=k/X;=1)=ap§d4 (1)
and
PY=0/X;=0) =0,
PY=1/X;=0) = l-w,
PY=2/X;=0) = w (1-2),
PY=k/X;=0) = w x 3301

The probability genérating functions of Y are for P (Y = k/ X; = 1)

g (1) = P(Y=k/X;=1) tk

T8

0
(I-a)t + [ (1) =3(L =) Jt2 4 [2 B(1-§) —x 3(1 - )] t°
v 1-3t

[o B § (1-3) —af (1-§) 3] t*
1-3t ’

4)
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g (t) = é P(Y = k/X; = 0) tk

(=1

(1-w)t + [w(l-2) = 5(1-w) ]2 + [wA(1-3) - w (1-2)] &3

- ?

1-3t
and for P (Y = k)
g0 = I P(Y=It = P(X = ) gy(t) + B(Xi = 0) goft)
Pt pla =D + plo f - ad)t? + p [ =D
1-3t

where the following identities obtained from (1), (2) and (3) have been
used: ’

ap = q (I-w), afp = (1-2) wp, f§p = Awq (1-3). (6)
Let

Yx = The number of trials to observe the k th occurrence of 1
after i th trial. At the initial trial X; is 1 or 0. Thus we can write

Yo=Y + (k-1) Y.

Yy is equal to the sum of k independent random variables. The proba-
bility generating function of Yy is for k > 1

f@) = £ P(Yeen) 0

N=

[=]

= g (1) [&1 (Y]
Since
PSu=k) =Py >k -PSy=>k+1)
= P(Yx <n)-P(Yx, <n)
the probability generating function of S; is of the form

Ge(t) = PSp=kt' =% P(Yy < n)t® -3 P(Yiy; <m)t?
nN=0 N==0 (7)

n=0

fi (8)  fiyq (V)
1-% 1-1t
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g (1) [ W' —g (1) [g (1]*
I-t

g (1) [g ()] [1-g (t)]
1-1t

From (4) and (5) we can obtain pt[1-g; (t)] = (1-t) g(t) and aceording
to this equation, Gi (t) can be written

Gk (t) — [g (t)]z‘ [gl (t)]k_l

Pt
| 1-3)k+1

:Ptk(a+bt+ct2+dt3)2(f—’rht+lt2+dt3)k—1_gl——sgw
(8)

where

I  a-d  af-ad _ (-3

a=T5 P T s o YT Taos o

_ l-a _ a(1-p-3(1-q

== b= 1-3 ’

L _ wBA-9-9p(-f)
1-3

In (8) (f + ht + 1t2 4 dt3)k~! is the probability generating function
of the multinomial distribution and (1 - §)%+1/ (1 - 3t)k*1 is the pro-
bability generating function of the negative binomial distribution.
From (7) it can be shown that P (S, = k) is the coefficient of t”.

The expansion of the Gy(t) allows us to write for k > 1

P (Sn = k) = p[azCp_x + 2ab Cpxy + (b2 + ac) Cpyp +
(2ad + 2be) Cpy—3 + (¢2 + 2bd) Cp g4 + 2¢d Cpx_5 + d2 Cp_x—g],
)
and for k =0
PBn=0=PX;=0, Xj;; =0, ..., Xjin=0) = gqwrd"2 (10)
where

k-1 m i k—1 k+n—-k-m—i—j-r j i—3 m—i k—l—-mn—k—m—i—j—r
Corr=3 % 2( )( )dl b
M=0 i=0 j=0 (11)

§ i~y m—i N-K-m—i—j-r
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LIMITING PROBABILITY FUNCTION

If np = u is held fixed as n — oo from (6) we can write

_ o SRR .1 S . S
l-w= ——, 1-2) = e 1-3 T (=) . (12)

The equations in (12) show that w,\ and § approach 1 as n — oc and
we can also obtain

lim p=lm — =0, Lm q =1,

N-w N0 n N»x

lim 3" —Lm |1 . %0 ] %8s,
N0 N0 7\W n ad

If we rearrange the expression (11) and let n>= we obtain

k—1 k-1
Cy = lim Cri_k”r = af§ue—*B§u X ( )
Do ) m=0 m

(1 - aB§™ (o262§%u) 1
(k —m)!

which is independent of r. From (9) and (10) it can be written fork > 1

— [1 + (2-9) + (af-ad) + af (§9)
lim P(Sp=k) = lim _2

N0 N-s0 aﬂ§
w (n—u)
Cox
Gt i
: - 558 (k-1)! (1-af§™ («?f2§Pu)k1-m
— 2828240 %Bu 13
WP B e iom)! (k ~ m)! » 1)
and for k=0
i
i —0) = L - __¥P3n | L easgu
lim P (Sy=0) = lim (1 2 )w7\ [1- 2 (n_u)] ¢85
In (13) by taking k-1-m = j it is obtained
. 20287 (1-afg)k-1 ko1 k!
1 — ) - _Z f2§%u ( apgu
lim P(Sn = k) k C N T e T,
228282 )j ' '
. 14
(5=, (14)
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Since
O 5 @)t
Lr(Y)—iEO (r—_l)—';m, r=20,1,2, ...

is the first—order Leguerre polynomials (see {2]), il can be shown that
(14) is of the form

. B B «282§2u (1-ap§)k-l  _ 5 6V «262§%u
lim P(Sn = k) = s e oBSu Ly s (_ i _aﬂ§) . (15)
CONCLUDING REMARKS

In the second—order Markov chain § = § = A. For this case, from
(15) we can obtain for k > 1

Noow k

lim P(Sp— k) — Py, (— “Tzi—i;—) (16)

and for k = 0
lim P(S; = k) = e *Bu
N-ow

Expression (16) is the limiting probability function in [2] for the second
order case.

Comparing (16) and (15) shows that we can write the following
expression in the case of the v th—order Markov chain for k > 1

2 2 - k-1 o)
lim P(Sp — k) — a? ... afu (1-ot; ... o) S CR AL P
N k
(_ . ayu
1_0(1 oo Oy
and for k = 0

lim P(S, = k) = e %1+ Oyl

N0

where for j = 1,2, ..., v

o= PX;= 0/Xs;=1, X;_;; =20, Xi;=0).
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