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A Noie On Matrix Transformations Of Some
eneralizel Sequence Spacee Into Semiperiodie Sequence Space

S. M. SIRAJUDEEN and D. SOMASUNDARAM
(Received November 24, 1983, accepted January 30, 1984)

ABSTRACT

By a counter example a minor errer in the principle of 1he preoofs of the inclusion
theorems on matix transfermations of some generalized suquence spaces into semiperiodic
sequence space in [12] is pointed and corrected with suitable changes in the statements. Our

conclysion in one of the tehorems is strengthened by anexanple due to Prof. B. Kuttner.

INTRODUCTION

The generalized sequence spaces [ (p), co(p) and [ (p) introduced
by 1.J. Maddox [5] and Q, the space of semiperiodic sequences are de-
fined in § 2. Let x = (xy) and X ay denote an infinite sequence (X, Xo,...,
Xk,...) and z ax respectively. If X and Y are any two sequence

k=1
spaces, let (X,Y) represent the class of all matrices A — (), k=1.2,...
that transform a sequence x = (xx) € X into a sequence Ax =y =(y,)cY
defined by

Yo =2 ag Xk ; n =12,....
In [12], the principle involved in proving the theorems on the classes

of matrices (I (p), ), 0 (co(p), 0) and (I« (p). 0) is that “if sup, X' | ay |

<, then givene > 0, there exists P =P () such that Z lagx| <e
k=P+1
for every n.”

But this is not true in general. For example take (a,x) to be the upper
triangular matrix
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ax = 2"k (k > n); a,x = 0 (k<< n),

sothat X jag | =1+ 271 4 272 + ... = 2 for every n.

Then whatever P be chosen, we have

o X
o,

Z Pa | = Z | ax | = 2 whenever n >P.
k=P+1 k=n

Hence in this note, we have established the theorems in {12}, using
the principle which will hold always, with suitable changes in the state-
ments.

2. If p = (px) is a sequence of strictly positive real numbers (not
necessarily bounded in general), let us define the required sequence
spaces as follows (see [1], [2), [3], [41. [5]. [6], [7), [8]. [9]. [11]
and [12]).

L(p) = fx =(xx): 2 | x| Py <<},
le(p) = {x = (xi): supx | x| P < 0],
colp) = | x=(xx): | xx [Px — 0 as k- ao}. ¢, (p) is a topological

linear space with paranorm g (x) = supx | Xk IPx /M where
H =max (1, sup px) (see [7]) and ¢, (p) (is a proper subset of m, the
space of hounded sequences.

Q = { x= (xg): (xx) is semiperiodic}. A sequence x = (xx) is
said to be semiperiodic, if to each ¢ >0, there exists a
a positive integer i such that | xx — xgri | < ¢ for all ¢
and k. The sequence Q is a separable subpace of m, the

space of bounded sequences.

When pi = 1 for all k, we write I (p), 1 « (p), €o (p) as [, m
and ¢, respectively. When px = 1/k, ¢, (p) and I « (p) become
respectively I and I'*, the spaces introduced by V. Ganapathy Iyer
[2]. When px== p> 1 for all k. we write / (p) as / p.

Now let us quote some required known results as follows.

LEMMA A (Theorem 1 [41), (i) Let 0 < pi << 1 for every k. Then
A e (I {p), m) if and only if

p —
SUPy,k lank ‘ LR s

and
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(i) Let 1< px < supg px < o and px ! - qx! =1 for every k. Then
A € (I(p), m) if and only if there exists an integer M > 1 such that

Sup, X 4‘ A,k !qk M 9 < @
LEMMA B (Theorem 10 and 11 [3]). Let p = (px), q = (q,) €m.

Then A €(co(p),/ 20 (p)) if and onmly if there exists an absolute
constant M > 1 such that

supn ( 2 ’ ank \i Mkil /pk) (1“ < ®©
which is equivalent to
sup ‘ ay [Hoxts) < oo
n.,k
when for the set of all p = (pk), there exists N > 1 such that
2 NPk << oo where 1y = py—! and 8, = 4,71,
LEMMA C (Theorem 3 [4] and Corollary 2 of theorem 2 [11]). Let
Pk > 0 for every k. Then A € (I (p), m ) if and only if

sup 2 | a, | Mlpg < oo for every integer M > 1.
n

3. Here and henceforth let e and ey represent respectively the sequ-
ences (1, 1, 1,....) and (0, 0, ...,0, 1, 0,....) the 1 in the kth place. Now in
the following theorems let us establish the necessary and sufficient
conditions for an infinite matrix A — (a,k) to transform the spa-
ces L (p), co (p) and I« (p) into Q and derive some known results as coro-
llaries.

THEOREM 1. A € (I (p). Q) if and only if
(1.1) each column of the matrix A = (a ,x) belongs to A, and
(1.2) sup |a, [Pk < o when 0 < P <1

ny.k
or

there exists an integer M > 1 such that

sup X' | agk [WM 9% < o0 when 1 < p, < sup p < o and
n

P! gt =1

PROOF: Let A € (I(p), Q). Since e €l (p), the necessity of (1.1) is obvious.
Since Q < m, the necessity of (1.2) follows from Lemma A.
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Conversely , let (1.1) and (1.2) hold, (xx) € I (p) and H = max
(1, sup py). From (1.2), we have

(1) | ay | P, < Lindependent of n when 0 << < 1,
(1.3) { or
(iiy 2 | a, | % M~% < L independent of n for some integer
M>1 whenl<p, <H < =
Since I (p) < ¢¢ (p) < m, there exists a R such that
(1.4) | xx | < R for all k,

and for a given ¢ > 0, there exists a P > 1 such that

N Px <
Z x| PR« = when 0 < px < 1, and

Vu €
( Z [ Xk l pk) ! < m when 1 < Pk < H <90
k=P-+1

When P is fixed ,by (1.1), for ¢ > 0 and for all n and r, there exists

o
<

ig, k = 1,2,....,P such that | Apk-Ap 1, - k|« PR If 11is the least

common multiple of ix; k =1, 2..., P, then

P
(1.6) kz: | 8yk — pirick | << —zvﬁ .
=1

Now
p
(]7) ‘l Yo = Yauri ‘ < SI "T S2 where Sl = Z 5 (ank'an+ri7k) Xk ‘ and

k=1

S2 = > | (dcapiria) X |
k=P+1
Case (i): When 0 < p,<C 1, Since (x,) €l (p), 2 | %, }pk < 1/L
where we can, without loss of generality use the same L as in (1.3), so
that | x; | L 1/Px < 1. Hence.
S, <2 > Li/% | x, | using (13)
k=P-+1
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o
= > L xx %

2 k=P+1
< ¢ /2 using (1.5)
and S5; < ¢/ 2 using (1.4) and (1.6).
Then form (1.7), we have |y, — yo.ri | < . Hence (y,) € A.
Case (ii): When 1< px << H < o0, by the proof of Theorem 2 [7] and the
inequality ’ ‘
lax | < B( |a |¢B-9+ |x |P)wherep ! L qt =1,
we have,

o

2N o, ;
Z | A Xy | SM( Z fa,, | ok M a9+ 1)( Z [Xk}l’k>1H

k=P+1 =P+1 k=P+1
< ¢/ 4 using (1.3) and (1.5)

+

Similarly Z | @y rik Xk | < c/4 so that S, < ¢/2 and
k=P+1

Sy < ¢/ 2 using (1.4) and(1.6).

Hence (y,) € Q so that Ae (I (p), Q).

COROLLARY la (Theorem 3 [1]). A e (1,Q) if and only if
(1) each column of the matrix A = (a,,) belongs to g, and.
(i) | a, | < M independently of n and k.

PROOF: Take px = 1 for all k.

COROLLARY 1b (Theorem 4 [13]). Let p> 1l and p~! + q — =1.
Then Ae (I, Q) if and only if

(i) each column of the matrix A = (a,,) belongs to Q, and

(i) sup 2 |a |1 <

PROOF: Take px = p> 1 for all k so that qx = q for all k and
Px ! + gk ! = 1 becomes p~t 4 q7t = 1. .

THEOREM 2. Let p=(px) € m. Then A € (¢, (p), Q) if and only if
(2.1) each column of the matrix A = (a,x) belongs to Q, and
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(2.2) there exists an ahsolute constant M > 1 such that

sup 2 | a, | M P < w
n

which is equivalent to

| i Pe
sup Ay | < L
n.k

when the set of all p == (px) is such that there exists N > 1 such that
ZN-1/Pg < op,

PROOF: Let A < (cq (p), Q). Since ey € ¢, (p), the necessity of (2.1)

is trivial.
Since QO < m, the necessity of (2.2} follows from Lemma B.
Conversely, let (2.1) and (2.2) hold and (xg) € ¢, (p). Then

—1
(23) 2 |Jayx | M P < L independent of n.
Since ¢, (p) < m,
(2.4) | xx | < R for all k.

Since (p,) e m, we can take on ¢, (p), the paranorm

g(x) = sup |xx| P/ where H = max (1, sup px). Then
k
n

g (x - Z Xk k) = sup| xg|/FP/® > 0 as P> so that x =
= k>P 1

2 xk ex  with this topology on co(p).
Hence given an ¢ > 0, there exists p = 1 such that

(2.5) |x | P/ < for k > P

4LML/A
When P is fixed ,by (2.1) , for ¢ > 0 and for all n and r, there exists

ig; k =1, 2... P such that | ap — pyrikok | < —2—;TR— . If i is the least

common multiple of ix; k=1, 2,...., P, we have

p
(2.6) k}_} l8p— @ purig | < ‘zlﬁ“

As in Theorem 1, we have
@7 [y~ Yot | <81+ 8,
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Now S; < ¢ [P 2 using (2.4) and (2.0). Also
Z % Ak ! ‘ Xk ‘ = Z | a5, { (3 X | Pk/H) H/Ry
k=P k=P+
- A "yp,
< 2 el (W)
k=P+1
using (2.5)
¢ ' -1/P
<L D, A | MU
k=P+1
< z/ 4 using (2.3)
Similary Z P agriee | | Xk | <
k=P+1

< €

so that S, <

)

Hence (2.7) gives |y, - y<n+1-i | < ¢ so that (y,) € Q.
COROLLARY 2a (Theorem 1 [1]). A € (co, Q) if and only if
(i) each column of the matrix A = (a,)) belongs to Q, and
(i) X | a,x | << M independent of n.
PROOF: Take py =1 for all. k.
COROLLARY 2 b (Theorem 4 [1]). Ae (I, Q) if and only if
(i) each column of the matrix A == (a,x) belongs to O , and
(i) | agc | 5 < D independent of n and k.
PROOF: Take py, =1/ k so that XM * < oo for M > 1.

THEOREM 3. If for the set of all p = (px), there exists a N > 1

_1
such that X NP~ << oo then A € (I « (p), Q) if and only if

(3.1) each column of the matrix A = (a,)) belongs to Q, and

(3.2) Sup X' | a, | M 1/P¢ < o for every integer M > 1.

PROOF : Let A € (1 « (p), Q). Since ex € | o (p), trivially (3.1.)

Is necessary.

Since 9 = m, the necessity of (3.2) follows from Lemma C,
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Conversely, let (3.1) and (3.2) hold and (xy) zleo (p). By (3.2) we
have.
(3.3) & | ax | M /Py < L independent of n.

Since for the set of all p = (py), there exists a N > 1 such that
2N /P < o, given an ¢ > 0, there exists a P > 1 such that

(3.4) Z N

k=P+1

When P is fixed, since (x,) € l. (p), we have
(3.5) | xk| < RU/"x < S where S = max (1,R1/%); k=1, 2,....,P.
By (3.1), for ¢ > 0 and for n and r, there exists iy, ; k= 1, 2, ....P.

such that |a |, —a iy | < 2—E§ . Then choosing i to be the least

common multiple of iy; k= 1,2, ..., P, we have
(3.6) Zl | Qn —a qurise | > —;S—

As in Theorem 1, we have
(37) ’ Yn =Y nuri l = Sl + SZ
Now S| < e / 2 using (3.5) and 3.6). Further
o kel B el R I/Pk
D lawlin = > LM RIS =L > (ﬁ)
k=P+1 k=P+1 k=P+1
Now choostng M > NR, we have

> laml xS L > NUR

k=P+1 k=P+1

<

e
-
2

Similarly z laprik ] | x| <
k=Pt1

so that S, <

Hence (3.7) gives | y, =¥ ni | << ¢ so that (y,) € O.
COROLLARY 3a. Ac (I'*, ¢) if and only if
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(i) each column of the matrix A = (a,x) belongs to Q, and

(i) sup X | asx | MX < o0 for every integer M > 1.

PROOF: Take py = 1/ k.

This can also be written in another form (Theorem 5 [1}]) as

Ae (I'*, A) if and only if
(iii) each column of the matrix A =(a,x) belongs to Q ,and

(iv) the sequence | f, (z)} of integral functions is uniformly bounded on
every compact set (of the comlpex plane) where f, (z) =2"ax z%;n=1,2,..

PROOF: The proof in the same as that of Corollary 2 of Theorem 4 (12 ]

REMARK. Theorem. 3 is false in the general case even when we
replace (3.1) by the stronger assumption that each column of the mat-
rix A =(a,x) is periodic. As for example, take p, =1 (all k), so that (3.2)

reduces to

(Ry) sup 2 | ay | < o

Now define

(1 ( n odd multiple of 2 k-1; k=1, 2,....)

g =
0 (otherwise)

Thus each column is periodic of period 2K. Also any positive integer
n can be experessed uniquely in the form p. 2° (1 odd, r an integer);
we just take 27 as the highest power of 2 dividingn (Of courseif nis odd,
then r = 0). Thus, for even n, there is just one value of k for which n
is an odd multiple of 2 X~1. Hence each row of the matrix A has one
element equal to 1, all the other elements being 0. Thus (R,) is satis-
fied.

Now define x= (x,) by
1 { k odd)

Xk =
0 ( k even)
Then x € o (p), so that if we show that y = (y,) = Ax does not
belong to Q, the falsity of the sufficiency part of the theorem will be
established.
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Now y, = a,, x, where k =k (n) is the unique k for which a . # 0.
Hence wededuce that

1 ( n an odd multiple of 227 ; r= 0, 1, Z,00)
(R3) v, — |
0 ( n an odd multple of 2713 r = 0, 1, 2,....)

Now any sequence of 0’s and 1’s which belong to Q must be perio-
dic; for the only positive values of | xj — Xkyri | are 0,1; so that if we
take ¢ < 1, the inequality | xj — Xiori | << € gives

X = Xgirp = 0;
in otherwords (xi) is of period r. So it is enough to verify that y is not

periodic.

Suppose y were periodic. Its period must be a positive integer so
that by what has already been said, its period can be expressed in the
form p. 28 with y odd, 3 > 0, § an integer.

Now

28 *1is an odd multiple of 2 3 *1 ( since 1 is odd)
2841 4 p 020 = (u + 2 ). 2%is an add multiple of 23.
since p is odd, so the u. -+ 2 is odd).
4 @

Thus by (R>), y, takes differentvalue s for n =23+1; n = 28 144,28,
This contraidcts the assumption that y, has period p. 25 .
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