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ABSTRACT

We find a new expression of the Gauss-Bonnet Theorem [Haschke (1948), Chern (1944),
Hichs (1974)] for the volume of the hyperspherical regions which are surrounded by the point
orbits of the hyperspherical motions [Hac sallhoglu (1977)], by using the Steiner’s vector
[Flanders (1966)]. The new expression satisfiess the well-known Bonnet area formulae [Blaschke
(1942), Hacisabhoglu (1972)] and the Gauss-Bonnet Theorem for even dimensional manifolds
[Chern (1944)]. At the and we obtain a genaralization for the Holditeh’s Theorem [Hacisalihoglu
(1971)] on hyperspheres. : i

We find a new expression of the Gauss-Bonnet Theorem for the volume of the hiypersphe-
rical regions which are surrounded by the point orbits of the hyperspherical motions, by using
the Steiner’s vector. The new expression satisfiess the well-known Gauss-Bonnet area formulae
and the Gauss-Bonnet Theorem for even dimensional manifolds. At the and we obtain a genera-

lization for the Holditch’s Theorem on hyperspheres.

GENERALIZATION OF THE GAUSS-BONNET THEOREM TO
THE CASE n > 3.

In this section, we express and prove the Gauss-Bonnet Theorem
for (n—1)-dimensional hypersphere SP-! in n-dimensional Euclidean

space ER by using the Steiner vector V, which is defined on a closed
region ‘A on SP-1 as in the following

DEFINITION 1: Let A be a compact region on the hypersphere
Sn-1 agnd X is an arbitrary fixed point of S»-1, Then the Steiner vector
defined as ’ ‘ '

Ve [ XV,
A

where Vg is the volume element of Sn-1,
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The definition on the Steiner vector in euclidean 3-space E3 is given
in [Haeisalihoglu (1971)] by the following formula

{7 = $w ;
where w is pfafian. The Steiner point Sy defined as
S, = $w X
jw

in [Haectsalihoglu (1971)]. Notice that the Steiner vector is the numerator
of this quotient. For hypersurfaces, the Steiner point S(M) is defined as

Mj'deG

S0 = JKds

in [Fladers (1966)], where K is the Gaussian curvature of the hyper-
surface M and do is the volume element of M.

When the M is a sphere St-1 then K=1. Thus, we have
‘Sn_l‘f Xdo
o1 fdo

For the relation between the Steiner point and the Steiner vector in Euc-
lidean 3-space, we introduce the definition of the Steiner vector on the
hypersphere in n-Euclidean space En as in Definition 1. Thus, Defini-
tion 1 can be taken as a generalization of the Steiner vector in 3-dimen-
sional space E3,

THEOREM 1: Let (X) be the orbit, on K’, of an arbitrary fixed
point X of K. The spherical volume Fx bounded by the closed region A
may be calculated from

S(Sn-1) —=

FX=<\7,)Z> (1)

where the vector V is the Steiner vector belonging to the closed re-
gion A,

PROOF: Let {;, ;2,...,;,1} be a coordinate system sueh that

- -

en == X. By the definition of the Steiner vector, we have

{;: _fe;Vs
. A
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= €n J Vs
A

= (0,0,...,0, | Vy).
A

It is seen that the components of V with respect to this coordinate
system are V; = V, = ... = Vo ; = 0 and V = | Vs From
that, we can obtain the following equation A

Vn = < v s €n >
or

Ast=<\7,gn> @)
In this equation, if we write the inner product of thek vectors
V = (Vi,...,Vp) and X = (O,...,0,1) instead of Vy, that is to say,
Vn:<‘7,5& > , we obtain

[ Vo= <V,X > .
A

Since the inner product is independent of the coordinate transforms,
we have

J4 VS::<{77§>

A
by putting the value of Vj, in the formula (2), or
Fx = J‘ Vs
A
=< V,X >

where Fy and Vg are the volume and volume element of the region A,
respectively.

SPECIAL CASE
a) The case n=3:

In this case, the region A is a spherical area that is surrounded by the
the curve (X). If we take the total rotation number of the tangential

dX of the curve (X) with respect to the fixed sphere K’ as 1 and choose
the compatible orientation on the sphere, then the relation obtained in the
Theorem 1 is the same as the Gauss-Bonnet formula for the real
2-sphere in [Blaschkel (1944)] and the formula (2.5) for the dual 2-
sphere in [Hacisalihoglu (1972)].



48 ALI GORGULU

b} The case n > 3 for n even

For the Gauss-Bonnet Theorem for an even dimensional hypersur-
face M in IR®*!, [Hicks (1974)] gives the following formula

Mf Wmeg A« -« A Wppoq = le n* (Vg .
The above equation, for a compact region A on the hypersurface M,
hecomes

JoWimer A - - o A Wiy = | V.
A A

If we take the region A as the region that is surrounded by the closed
curve (X) which is the orbit on the unit hypersphere K’ drawn by a
fixed point X of the unit hypersphere K: then the volume Fy of the re-
gion A has the following expression

Fo= | Vs.
A

Since the inner product is independent of the coordinate transforms,
as in the proof of Theorem 1, one can show that

N Vs:<;f,§(>.

Thus, we again obtain that

Fx=<{775(>.

All the special cases a and b imply that “for all n, even if n > 3
nis odd or even number, Theorem 1 is a generalization of the
Gauss-Bonnet Theorem”.

APPLICATIONS OF THE GAUSS-BONNET TOEOREM AND
A GENERALIZATION OF THE HOLDITCH’S THEOREM

Let K and K’ be cocentered unit hyperspheres in Euclidean n-space
En, We denote the one parameter motion of K with respect to K’ by
K /K'. In. the following part of this section, the term sphere means
that the (n—I)-dimensi onal hypersphere Sn71 in FEuclidean n-space
En, During the one parameter closed motion K /K', two fixed points
M, N of K generally plot two closed curves on the fixed sphere K'.
Let these two curves encircle the spherical volumes Fy and Fy re-

spectively. Consider another fixed point X of K on the arc MN of a great
circle on K of given lenght. During the same motion the point X also
draws another closed curve (X) on the sphere K'. Denote by Fy the
volume surrounded by (X). Therefore, according to (1)
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=1
<3|

Fy = < >

, Vo> (3)

2L

FN=<
Fx=<§(, \7>

where the vectors M , N and X are the position vectors of the points
M, N and X, respectively. On the other hand, since

- — —>
N =M 4+ MX

and
—_ — .9
X =M L MX,

(3) becomes

FN:FM“{‘<M,N3{7>

— - — S
Fx =Fy + < MX,V>=Fy+ <«<NX,V > 4)

Thus one obtains
1 —> —> =
Fx:—i {Fu + Fx + <MX 4+ NX , V >} (5)

The case of Fy = Fy is an important special case. Now, let us discuss
the necessary and sufficient conditions for this case. In this special case,
the ends M and N pass round equal volumes or they draw the same
curve (I') on K'. For this case, according to equality of (4), one can
write

- —>
< V,MN > = 0.

Hence, there is the theorem below:

THEOREM 2: During the one-parameter closed motion K/K/,
- —>

<V, MN > = 0 is the necessary and sufficient condition that the
two ends M, N of the moving arc go around either the same spherical
curve or tow curves of equal volume.

Now, more generally, one can seek the locus of all the points of
K which pass round either the spherical curve or different spherical
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curves of equal volume. According to the Theorem 2, for each pair of
points of this sort, the directions are orthogonal to the Steiner vector

V of the motion K /K’. Therefore, all of these points must lie on the same

hyperplane whose normal is V.

Heuce, we have is the following theovem:

THEOREM 3: Consider the volumes surrounded by different
points of the moving sphere K that are not all on the same great circle.
For the equality of these volumes, the necessary and sufficient condition
is that these points must lie on the same hyperplane whose normal is

the Steiner vector V of the motion K /K'.

In the case of Fyy = Fx, let two ends M, N of a moving arc MN go
around the same spherical closed curve (I') on K’. Then the spherical
ring volume I between the closed curves (I') and (X) can be expressed
as follows

F=Fy —Fy or F= Fy — F

and, according to (4)

—> - — o
F= «<XN,V> or F= <« XM,V > . (6)
This shows that the ring volume on the sphere depends on the Steiner

vector V or the closed curve () of K.

Now, let us rewrite (6) analitically. For this we can choose any
special rectangular coordinate system in K because (6) is an inner
product and an inner product is independent of coordinate transfor-

mations. For example, MN be on the great circle of (X;0Xy) and M =
(1,0,...,0). Then the central angles of 1\/13(7 XN and MN are 1. pp and
¢, respectively. Thus

X = (cos py, 0,...,0,8in o)
and

N = (cos p, 0,...,0,sin p).
Hence (6) reduces to

F=2 sin (p;/2) sin (p,/2) V,

sin (p /2) ’ ()
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and, since
sin (py/2) = MX /2
sin (p,/2) = NX /2
and
sin (p /2) = MN/2
(7) becomes
Poo| Vel (8)

Now, consider another point Y on the arc M/ﬁ such that while the
point X draws its orbit (X), Y draws another orbit (Y) on the same
sphere K'. The volume ¥’ bhetween the curves (I') and (Y), according
to (8), can be expressed as follows

F/: "*,_____'.V 9
| == h ©)
Then (7) and (8) give
F _[1\75(]2 MY . NX 2.8
oLy MX . NY '

or if ) stands for the following ratio

MY . NX
then,
F MY]Z
_ = | == LA
F MY

Hence one can give the following theorems.

THEOREM 4: Let the two ends M, N of a moving arc MN with

constant lenght go around the same convex simple curve (I') on K'.

If one chooses a fixed poing X on the arc MN, X describes a closed curve
(X) on the same sphere, while M and N move on the curve (I').
The spherical ring volume F between the two closed (I') and (X) can be
expressed by (8).
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THEOREM 5: Consider a one-parameter closed spherical motion
K/K’ and a fixed great circle on the moving sphere K. Choosing
four arbitrary fixed points M, N, X, Y on this great circle, let two of
them move on the same curve (I'), while the other two describe differ-
ent curves (X) and (Y). If the ring volume between (I') and (X) is ¥
and the volume between (I') and (Y) is F, then the ratio F [F’ depends
only on the relative positions of these four points M, N, X, Y.
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