Commun. Fac. Sci. Univ. Ank., Series A₁ V. 35, pp. 61 - 65 (1986)

ABSOLUTELY p-th POWER CONSERVATIVE MATRICES

C. ORHAN

Dept. of Mathematics, Ankara University, Ankara, Turkey

(Received: 10 September 1986)

ABSTRACT

In this paper, we define absolutely p-th power conservative matrices and determine the sufficient conditions for a normal matrix to be absolutely p-th power conservative.

INTRODUCTION

Let $A = (a_{n_k})$ be an infinite matrix and $x = (x_k)$ be an infinite sequence and X, Y be two subsets of the space of complex sequences. If

the sequence $(A_n(x)) = \begin{pmatrix} \sum_{k=0}^{\infty} a_{n_k} x_k \end{pmatrix}$ exists (i.e. the series on the

right hand side is convergent for each n) and if $(A_n(x)) \in Y$ whenever $x \in X$, then we say that A transforms X into Y.

In this paper we introduce a Banach space S_{p} closely related to l_{p} where

$$\mathit{l}_{p} = \{\!\! u = (u_{k}) \!\! : \hspace{0.5cm} \sum\limits_{k} \hspace{0.5cm} |u_{k}|^{p} < \infty, \, 0 < p < \infty \}\!\! .$$

and determine the sufficient conditions for a normal matrix to transform S_p into S_p . We recall that a normal matrix is a semi-lower matrix with non-zero diagonal.

DEFINITION AND THE MAIN RESULT

For $1 \le p < \infty$ let us define

$$S_p = \left\{ u = (u_k): \sum_{k=1}^{\infty} k^{p-1} |u_k|^p < \infty \right\}.$$

In what follows we assume that $1 \le p < \infty$. Then the following properties of S_p are routine to establish.

(i) S_{p} is a Banach space under the norm

$$\parallel u \parallel_p = \left(\begin{array}{ccc} \sum \limits_{k=1}^{\infty} & k^{\mathfrak{p}_{-1}} & \mid \ u_k \mid_p \right)^{1/p}$$

(ii)
$$S_p \subset I_p$$
, (iii) $S_p \subset S_q$, $1 \leq p < q < \infty$

Definition. A matrix $C=(c_{n_k})$ is called absolutely p-th power conservative if it transformss S_p into S_p , i.e., if $C\in (S_p,S_p)$.

Now we have the following

THEOREM: Let us consider the series-to-series transformation

$$\omega_n = \sum_{v=0}^n c_{nv} u_v$$

Suppose that the following conditions hold

$$\sum_{n=v}^{\infty} |c_{nv}| = O(1)$$
 (1)

$$\sum_{v=1}^{n} \frac{|c_{nv}|}{v} = O(1/n)$$
 (2)

$$|\mathbf{c}_{\mathrm{no}}| = \mathrm{O}(1/\mathrm{n}) \tag{3}$$

Then the transformation is absolutely p-th power conservative.

PROOF: Before proving the theorem we note that (2) implies that, for fixed $v \geq 1$,

$$|c_{nv}| = O(1/n)$$

For the proof of the theorem, we write

By Minkowski's inequality, it is enough to show that

$$\sum\limits_{n=1}^{\infty}\ n^{p-1}\,\big|\omega^{i}_{n}\big|^{p}<\infty,$$
 (i = 1,2).

Let i=1. By (3) we have

$$n^{p_{-1}} \left| \left| c_{no} \right|^p \right. = \left. O \left. \left(\left| c_{no} \right| \right) \right.$$

and the result follows from the case v=0 of (1).

Now let i=2. By Hölder's inequality when p>1 (and trivially when p=1) we have, for $n\geq 1$

$$\begin{split} \left| \omega^2_n \right|^p \, < \, \left\{ \begin{array}{cc} \sum\limits_{v=1}^n & \left| c_{nv} \right| \\ v & \end{array} \right\}^{p-1} \, \left\{ \begin{array}{cc} \sum\limits_{v=1}^n & \left| c_{nv} \right| \, v^{p-1} \, \left| u_v \right|^p \\ \\ \leq & \frac{M}{n^{p-1}} \, \sum\limits_{v=1}^n \, \left| c_{nv} \right| \, v^{p-1} \, \left| u_v \right|^p \end{split} \right. \end{split}$$

by (2), where M is a constant. Hence by (1)

$$\begin{split} \sum\limits_{n=1}^{\infty} \ n^{p-1} \left| \omega^1 \right|^p &< M \quad \sum\limits_{n=1}^{\infty} \ \sum\limits_{v=1}^{n} \ \left| c_{nv} \right| \, v^{p-1} \, \left| u_v \right|^p \\ &= M \quad \sum\limits_{v=1}^{\infty} \ v^{p-1} \, \left| u_v \right|^p \quad \sum\limits_{n=v}^{\infty} \ \left| c_{nv} \right| \\ &= O \left(\ \sum\limits_{v=1}^{\infty} \ v^{p-1} \, \left| u_v \right|^p \right) \, < \infty \end{split}$$

by assumption. Thus the theorem is proved.

REMARK. The conditions of the theorem are satisfied in particular when $C=(c_{nv})$ is a conservative Hausdorff transformation (expressed in series-to-series form). Corresponding to a sequence $\mu=(\mu_v)$ the Hausdorff transformation (H, μ_v) is given by

$$t_n \ = \ \sum_{v=0}^n \ \left(\begin{matrix} n \\ v \end{matrix} \right) \left(\triangle^{n-v} \ \mu_v \right) \, s_v$$

where $\binom{n}{v}$ denotes the ordinary binomial coefficient, and \triangle is the forward difference operator defined by $\triangle \mu_v = \mu_v - \mu_{v+1}$, $\triangle^n \mu_v = \triangle (\triangle^{n-1} \mu_v)$. For other properties of Hausdorff matrices the reader may consult (Hardy 1949).

If we suppose that $t_n = \omega_o + \omega_1 + \ldots + w_n$, and $s_v = u_o + u_1 + \ldots + u_v$, then (ω_n) is given in terms of (u_v) by

$$\omega_n = \begin{array}{cc} \sum\limits_{v=o}^n \ c_{nv} \ u_v \end{array}$$

where

$$\begin{array}{lll} c_{oo} &= \mu_o \\ c_{no} &= o \ (n \ \geq \ l) \end{array}$$

$$\begin{array}{lll} c_{nv} &= \frac{v}{n} \ \binom{n}{v} \bigtriangleup^{n-v} \mu_v = \binom{n-1}{v-1} \bigtriangleup^{n-v} \mu_v, \ l \leq v \leq n \end{array}$$

Thus (3) is trivially satisfied. It is known that (H, μ_v) is conservative if and only if μ_v can be expressed in the form

$$\mu_{\mathbf{v}} = \int_0^1 \mathbf{t}^{\mathbf{v}} \, \mathrm{d}\mathbf{q} \, (\mathbf{t}) \tag{4}$$

where $q(t) \in BV(0,1)$; so we suppose that (4) holds.

Then

$$\triangle^{n-v} \ \mu_v = \int_0^1 t_v \ (1-t)^{n-v} \ dq(t)$$

Thus

$$\begin{split} \sum_{n=v}^{\infty} & \left| \mathbf{c}_{nv} \right| \leq \sum_{n=v}^{\infty} \left(\frac{n-1}{v-1} \right) \int_{0}^{1} t^{v} \left(\mathbf{1} - t \right)^{n-v} \left| dq(t) \right| \\ &= \int_{0}^{1} \left\{ \sum_{n=v}^{\infty} \left(\frac{n-1}{v-1} \right) \right) t^{v} \left(\mathbf{1} - t \right)^{n-v} \left\{ \left| dq(t) \right| \right. \\ &= \int_{0}^{1} \left| dq(t) \right| = O \left(1 \right). \end{split}$$

Moreover we get

$$\begin{split} & \frac{\sum\limits_{v=1}^{n} \ \left| c_{nv} \right|}{v} \leq \frac{1}{n} \ \sum\limits_{v=1}^{n} \ \left(\frac{n}{v} \right) \ \int_{0}^{1} \ t^{v} \ (1-t)^{n-v} \ \left| dq(t) \right| \\ & = \frac{1}{n} \ \int_{0}^{1} \left\{ \ \sum\limits_{v=1}^{n} \ \left(\frac{n}{v} \right) \right) t^{v} \ (1-t)^{n-v} \ \left\{ \ \left| dq(t) \right| \right. \\ & = \frac{1}{n} \ \int_{0}^{1} \left(1 - (1-t)^{n} \right) \ \left| dq(t) \right| \leq \frac{1}{n} \ \int_{0}^{1} \left| dq(t) \right| = O \ \left(\frac{1}{n} \right). \end{split}$$

Hence the conditions of the theorem are satisfied.

ACKNOWLEGMENT

This paper was partly prepared during my visit to Birmingham University. I would like to express my sincere thanks to Professor B. Kuttner for his valuable comments.

REFERENCES

HARDY, G.H., 1949. Divergent Series. Oxford.