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ABSTRACT

A generalization relative to a congruence of curves for the Laguerre function of a hyper-
surface in a Riemannian space has obtained by Nirmala (1965) . In this article we generalize
the Laguerre function relative to any vector field without using a congruence of curves.

CURVATURE FUNCTIONS

Let {yi,..., yn*1} be a coordinate system of a C* Riemannian
(n+1)-manifold M whose Riemannian metric is
n4+1 ‘ .
a= X agsdy* ® dy8,
o8
and {x!,..., xn} be a coordinate system of a hypersurface M of M
with

g = % gij dxi @ dx!
i,
as the fundamental metric. Let V be a mapping which attaches to each
point p of M, a tangent vector V, in T, (M). Then V is called an M-
vector field defined on M. V is said to be C® on M if about each point
p of M there is a coordinate neighbourhood U of p in M with coordinate
functions yt ,..., y?*1 such that
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on U where y*° s are C* functions on the neighbourhood-U of M, and

{E1,..., En.1} is a (local) basis of T (M). The set T (M) of all such
(smooth) vector fields is a module over C* (M,IR). For any Y e T (M)

the restriction Y /M is in T (M). T (M) is a submodule of T (M).

Let D denote the Riemannian connection on M. Then the connec-
tion D gives rise in a natural way to a function

T(M) x TM) ———— T(M)

called the induced connection on M. Since the induced connection is
so closely related to the Riemannian connection of M we will use the
same notation for both. If X, Y € T(M), then

DxY = tan DxY
where D is the Riemannian connection of M, and
tan: T(M) ——— T(M)
is C* (M,IR)-linear.

Now consider V e T(M). We can decompose V uniquely into its
tangential and normal components given by '

V= 1tan V 4+ nor V,. 1
where
nor: T(M) _— T(M)'L

is C® (M,IR)-linear. Let C: x! = xI (s) be a C® curve passing through
a point p on M and T be the unit tangent vector field of C on M. Co-
variant derivative of V in the direction T gives

DyV = Dg(tan V) + Dr (nor V). ()
If h is a real valued C*® function on U, then we have
ner V = hN, , o 3)

where N is the unit normal vector field to M. Hence using the Gauss’
equation in (2), we can write

DyV = (D(tan V) + BL(T)) + (T(h) 4+ < L(T)tan V > )N
or putting
Dy(tan V) -+ hL(T) — tan DyV,
(T(b) + < L(T), tan V > )N = nor DpV
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in this equation we have

DpV = tan DpV + nor DV, 4)
where L is the Weingarten map and T(h) is the derivative of h in the
direction T. Now let V be unit vector field. Then

DV, tan DpV and nor DyV

are called the absolute curvature vector field, geodesic curvature vector
field and normal curvature vector field of the vector field V with res-
pect to C, respectively. In addition, if we put [tan V| = t, then real
valued C* functions '

()
"ﬁTV " = Kv/l, (1 /t) |]tan ]_)TV I' = Kv/g and (1 /t) "nor DTV " = KV/n
are called the ahsolufe curvature functioﬁ, geodesic curvature function

and normal curvature function of the vector field V with respect to C,
respectively. Hence the equation (I.4) can be written as

Ky/ Ny =t (Kyg X + Kyn N) (6)

where N;, X and N are the unit vector fields along the absolute cur-
vature vector field, geodesic curvature vector field and normal curva-
ture vector field of V with respect to C, respectively.

In the particular case when V = T, the expressions Kv/l,- Kv/n,
and Ky/g reduce to geodesic curvature function of Cin M, normal curva-
ture function and geodesic curvature function of C in M respectively,
and therefore the equation (1.6) takes the form,

DT = Ky b + Kq N,

where b is a unit vector field along the geodesic curvature vector field

of C in M [Weatherburn (1957)].

THE OPERATOR S
Let V be an M-vector field defined on M and

n+i
V= X ’V‘3 Eg
B

be its local expression. We define

n
djvB = X Ve;dxi, : O
i
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where
B nsi
Ve = oV + B oy vere Yi . (8)
o xi Y,y-
Then we can write that
d 5 i 9
s o= —— J
3 ; 8 Xj > S ( )
where the operator 4 88)(1'" is the symbol of covariant differentiation
defined by
5 5 SV s
3 xi (V)_-—ij V5
Since
3y¥ _ _9y*
3 xi o xi
we get
diy? = dy¥ . (10)
Now let us define
n+1 ’
S= X <djy*,d; > Ey . (11)
o
Hence
v " B :
S®V = X <dy,dV°'>E, @ Eg. (12)
«,B

If X any vector field and

n+1

X: 2 aV EV
v

is its local expression, then the direct product (or dot product) of X
with S ® V gives ~ .

n+y n+1 8
X.S@V = % (2 av a¥ < dyy%, d;V >) Es. (13)

B v?“’
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The following theorem gives us a relation between the operator S
and the covariant derivative.

THEOREM 1: Let Z be any vector field in T(M). Then
Z.S®V=D0,V . (14)
PROOF: If

n o
Z— 3 bke ., (ek: ...... )
k

then we have

Hence
n+1 n+1 1 8 ! : .
Z-S®V: = (Z Avyg (Z bky\';k<d3y“,d3V >>> hg.
P : v,0 k
Since
n P 5
<djy,di VP> = I yh gl V7,
i%j

it follows that

n+1 n n n+1 7 . 8
Z.S®V= [ p ( < p awy\‘;ky“;i) gll\ hkV =y ] Eg
- i,k i v,0 /
u+1 n
— [ 3 (2 i gi.i) bk VB;,-] Es
ik i y
o N1 n
=5 ( bJVB,J)EB
B i
= DZ . QED.

THEOREM 2: Let Y be an M-vector field defined on M. Then

| Y.S$®V=DumvyV . (15)
PROOF: We can decompose V uniquely into its téngentiaﬂ and
nbrmal components given by

Y:ianY%—norY.
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Then
Y. SV = (tan Y 4+ norY) .S ®V

=tan Y .S @V +norY.SQ®V
=tanY .S QV+(hN).S®V
=tanY.SQV+h(N.S®V),

and since

N.S®V=0
we find

Y. S®@V=tanY .S ®V.
Since tan Y € T (M), using (14) we obtain
Y. S®V =Dy V. QED.

GENERALISED LAGUERRE FUNCTION

Let V be a unit M-vector field defined on M and C be a C= curve
passing rhrough a point p on M. Let T denote the unit tangent vector
fieldof C ofi M. The function Ky, defined by

——KV/:<ETV,T> (16)
is called the generalised normal curvature of the curve C relative to
the vector field V [Singal and Behari (1955)]. Covariant derivative
of (16) in the direction T gives ,

— T(Kv/) = < I—)T(DTV) , T > -+ < DTV y f)TT > . (17)
Moreover since
< Dp(DrV), T>= < Dr(TSQV),T >
= <DITSQ®V,T>+ <TDr(SQ®V),T >
= < DtanﬁTTv’T >4+ <TDr (S ®V),T >
the equation (17) reduces to
— T(KV/) = < DtaDDTT V,T > + < TﬁT (S (%) V), T > + ‘< DTV,
DTT -
Hence we obtain
(18)
— <TDr(S®V),T>=T(Ky,) + < DtanDTT V.T > + « DqV,
ETT > .
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We shall call — < T . Dy (S ® V), T > = Ly as the generalised La-
guerre function for the direction T and a curve in M such that the gene-
ralised Laguerre function in the direction of the curve vanishes at each
point of the curve as a generalised Laguerre line.

Now let us deseribe Ly in terms of curvatures. We have

tan .DT
= Kg < DV, T >
= tKgKV/g <a,T>,
where Ky/q is the geodesic cnrvature function of V with respect to a
curve C’ : xi = xi (s') whose the unit tangent is b, and 4 is the unit vec-
tor field along the geodesic curvature vector field of V with respect to
C’. Let us say

< a,T > = cos0 .
Then
< ]-)tanﬁTT V,T > = tK Ky/gcost . 19)
Moreover
< DoV, DyT > = < tKyn N 4 tKyg X, KnN + K¢b >
=tKyn N+ tKy /g Kg <X, b >,
and if we say < X , b > = cos ¢ then we have
< DpV, DqT > = tKyn Ky + tKyjg Kgcos o . (20)
Hence (18) reduces to
Ly = T(Ky)) + tKymnKy + tKg(Ky/g cos b + Ky/g cos o)
which is in terms of curvatures.
SPECIAL CASES
1. When V is normal to M and n > 2, (18) can be written as
Ly = T(Ky) + 2 < DgN, DT > (21)

since
Ky, =Kpand < D, DT N.T > = < DN, DT > .

In terms of curvatures, (21) takes the form

Ly = T(K,) + 2 Tg Kg cos v, (22)
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where Ty is the geodesic torsion of the curve C, cosy = << N, ,b > and
N, is the unit 2-th normal vector field of the curve C.

2. When V is normal to M and n=2, we have N, = band ¢ = 0.
Thercfore

Ly = T(Ky) + 2 Tg K, (23)

which is an expression obtained for the Laguerre function of a surface
in a 3-manifold, by Weatherburn [1957].
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