Commun. Fac. Sci. Univ. Ank., Series A, V. 35, pp. 19-26 (1986)

A GENERALIZATION FOR LAGUERRE FUNCTION OF A HYPERSURFACE IN A RIEMANNIAN MANIFOLD

ERDOĞAN ESİN and H. HİLMİ HACISALIHOĞLU

Department of Mathematics, Gazi University, Ankara, Turkey (Received: September 25, 1984)

ABSTRACT

A generalization relative to a congruence of curves for the Laguerre function of a hypersurface in a Riemannian space has obtained by Nirmala (1965). In this article we generalize the Laguerre function relative to any vector field without using a congruence of curves.

CURVATURE FUNCTIONS

Let $\{y^1,\ldots,\ y^{n+1}\}$ be a coordinate system of a C^∞ Riemannian (n+1)-manifold \overline{M} whose Riemannian metric is

$$a \; = \; \sum_{\alpha,\beta}^{n_+\, 1} \; a_{\alpha\beta} \; dy^\alpha \, \otimes \, dy^\beta \; , \label{eq:absolute}$$

and $\{x^{\,_1}\,\,,\ldots,\,\,x^n\}$ be a coordinate system of a hypersurface M of M with

$$g = \sum_{i,j}^{n} g_{ij} dx^{i} \otimes dx^{j}$$

as the fundamental metric. Let V be a mapping which attaches to each point p of M, a tangent vector V_p in T_p (\overline{M}). Then V is called an \overline{M} -vector field defined on M. V is said to be C^∞ on M if about each point p of M there is a coordinate neighbourhood \overline{U} of p in \overline{M} with coordinate functions y^1 ,..., y^{n+1} such that

$$V = \begin{array}{cc} \sum\limits_{\alpha}^{n_{+}\,1} \,\,V^{\alpha}\,E_{\alpha}\;, & \left(\,E_{\alpha} \,=\, \frac{\partial}{\,\,\partial\,y^{\alpha}}\,\,\right) \end{array}$$

on U where $V^{\alpha'}$ s are C^{∞} functions on the neighbourhood-U of M, and $\{E_1,\ldots,E_{n+1}\}$ is a (local) basis of T (\overline{M}). The set \overline{T} (M) of all such (smooth) vector fields is a module over C^{∞} (M,IR). For any $Y \in T$ (\overline{M}) the restriction Y/M is in \overline{T} (M). T (M) is a submodule of \overline{T} (M).

Let \bar{D} denote the Riemannian connection on \bar{M} . Then the connection \bar{D} gives rise in a natural way to a function

$$T(M) \times \overline{T}(M) \longrightarrow \overline{T}(M)$$

called the induced connection on M. Since the induced connection is so closely related to the Riemannian connection of \overline{M} we will use the same notation for both. If X, Y \in T(M), then

$$D_XY = tan \bar{D}_XY$$

where D is the Riemannian connection of M, and

tan:
$$\overline{T}(M) \longrightarrow T(M)$$

is C^{∞} (M,IR)-linear.

Now consider $V \in \overline{T}(M)$. We can decompose V uniquely into its tangential and normal components given by

$$V = \tan V + \operatorname{nor} V, \qquad (1)$$

where

nor:
$$\overline{T}(M) \longrightarrow T(M)^{\perp}$$

is C^{∞} (M,IR)-linear. Let $C: x^i = x^i$ (s) be a C^{∞} curve passing through a point p on M and T be the unit tangent vector field of C on M. Covariant derivative of V in the direction T gives

$$\bar{D}_T V = \bar{D}_T (\tan V) + \bar{D}_T (nor V).$$
 (2)

If h is a real valued C[∞] function on U, then we have

$$nor V = hN, (3)$$

where N is the unit normal vector field to M. Hence using the Gauss' equation in (2), we can write

 $\bar{D}_T V = (D_T (tan~V) + hL(T)) + (T(h) + < L(T), tan~V >) N$ or putting

$$D_{\mathrm{T}}(an V) + \mathrm{hL}(\mathrm{T}) = an \bar{D}_{\mathrm{T}} \mathrm{V},$$
 $(\mathrm{T}(\mathrm{h}) + < \mathrm{L}(\mathrm{T}), \, an \, \mathrm{V} >) \mathrm{N} = \mathrm{nor} \, \bar{D}_{\mathrm{T}} \mathrm{V}$

in this equation we have

$$\bar{D}_T V = \tan \bar{D}_T V + nor \bar{D}_T V, \qquad (4)$$

where L is the Weingarten map and T(h) is the derivative of h in the direction T. Now let V be unit vector field. Then

$$\bar{D}_T V$$
, tan $\bar{D}_T V$ and nor $\bar{D}_T V$

are called the absolute curvature vector field, geodesic curvature vector field and normal curvature vector field of the vector field V with respect to C, respectively. In addition, if we put $\|\tan V\| = t$, then real valued C^{∞} functions

$$\|\bar{D}_TV\| = \overline{K}_{V/1}, \ (1/t) \|\tan \bar{D}_TV\| = K_{V/g} \ \text{and} \ (1/t) \|\text{nor} \ \bar{D}_TV\| = K_{V/n}$$
are called the absolute curvature function, geodesic curvature function

and normal curvature function of the vector field V with respect to C, respectively. Hence the equation (I.4) can be written as

$$\overline{K}_{V/1} \overline{N}_1 = t (K_{V/g} X + K_{V/n} N),$$
 (6)

where \overline{N}_1 , X and N are the unit vector fields along the absolute curvature vector field, geodesic curvature vector field and normal curvature vector field of V with respect to C, respectively.

In the particular case when V=T, the expressions $\overline{K}_{V/1}$, $K_{V/n}$, and $K_{V/g}$ reduce to geodesic curvature function of C in \overline{M} , normal curvature function and geodesic curvature function of C in M respectively, and therefore the equation (1.6) takes the form,

$$\bar{\mathbf{D}}_{\mathbf{T}}\mathbf{T} = \mathbf{K}_{\mathbf{g}} \mathbf{b} + \mathbf{K}_{\mathbf{n}} \mathbf{N},$$

where b is a unit vector field along the geodesic curvature vector field of C in M [Weatherburn (1957)].

THE OPERATOR S

Let V be an M-vector field defined on M and

$$V = \begin{array}{cc} \sum\limits_{\beta}^{n+1} \ V^{\beta} \ E_{\beta} \end{array}$$

be its local expression. We define

$$d_{j} V^{\beta} = \sum_{j}^{n} V^{\beta};_{j} dx^{j}, \qquad (7)$$

where

$$V^{\beta};_{j} = \frac{\partial V^{\beta}}{\partial x^{j}} + \sum_{\gamma,\mu}^{n+1} y^{\gamma};_{j} V^{\mu} \Gamma^{\beta} \gamma \mu . \qquad (8)$$

Then we can write that

$$d_{j} = \sum_{j}^{n} \frac{\delta}{\delta x^{j}} dx^{j}, \qquad (9)$$

where the operator $\frac{\delta}{\delta x^j}$ is the symbol of covariant differentiation defined by

$$\frac{\delta}{\delta \, \mathbf{x}^j} \, \left(V^\beta \right) \, = \, \frac{\delta \, V^\beta}{\delta \, \mathbf{x}^j} \, = \, V^\beta;_j \, \, . \label{eq:delta_sigma}$$

Since

$$\frac{\delta \mathbf{y}^{\gamma}}{\delta \mathbf{x}^{\mathbf{j}}} = \frac{\partial \mathbf{y}^{\gamma}}{\partial \mathbf{x}^{\mathbf{j}}}$$

we get

$$d_j y^{\gamma} = dy^{\gamma} . \tag{10}$$

Now let us define

$$S = \begin{array}{cc} \sum\limits_{\alpha}^{n_{+1}} & < d_{j} \; y^{\alpha} \, , \, d_{j} > E_{\alpha} \quad . \end{array} \eqno(11)$$

Hence

$$S \otimes V = \sum_{\alpha,\beta}^{n+1} < d_j y^{\alpha}, d_j V^{\beta} > E_{\alpha} \otimes E_{\beta}. \qquad (12)$$

If X any vector field and

$$X = \mathop{\Sigma}\limits_{\nu}^{n_{+1}} \, a^{\nu} \, E_{\nu}$$

is its local expression, then the direct product (or dot product) of X with $S \otimes V$ gives

$$X . S \otimes V = \sum_{\beta}^{n+1} \left(\sum_{\nu,\alpha}^{n+1} a_{\nu\alpha} a^{\nu} < d_j y^{\alpha} , d_j V^{\beta} > \right) E_{\beta} . \quad (13)$$

The following theorem gives us a relation between the operator S and the covariant derivative.

THEOREM 1: Let Z be any vector field in T(M). Then

$$Z \cdot S \otimes V = \bar{D}_{Z}V \qquad (14)$$

PROOF: If

$$Z = \sum_{k=0}^{n} b^{k} e_{k}$$
 , $\left(e_{k} = \frac{\partial}{\partial x^{k}}\right)$,

then we have

$$Z = \begin{array}{cc} \sum\limits_{\nu}^{n_{+1}} & \left(\begin{array}{cc} \sum\limits_{k}^{n} & b^{k} \; y^{\nu};_{k} \end{array} \right) \; E_{\nu} \; . \label{eq:Z}$$

Hence

$$Z \;.\; S \;\otimes V = \;\; \mathop{\textstyle \sum}_{\beta}^{n+1} \;\; \left(\mathop{\textstyle \sum}_{\nu,\alpha}^{n+1} \;\; a_{\nu\alpha} \;\; \left(\mathop{\textstyle \sum}_{k}^{n} \;\; b^{k} \; y^{\nu};_{k} < d_{j} y^{\alpha} \,,\, d_{j} V^{\beta} > \right) \,\right) \;\; E_{\beta}.$$

Since

$$\label{eq:continuity} < d_j \; y^\alpha \, , \, d_j \; V^\beta > \; = \quad {\textstyle \sum\limits_{i^* j}^n } \quad y^\alpha ;_i \; g^{ij} \; V^\beta ;_j \, ,$$

it follows that

$$\begin{array}{l} Z \;.\; S \;\otimes V = \;\; \sum\limits_{\beta}^{n+1} \;\; \left[\;\; \sum\limits_{j,k}^{n} \;\; \left(\; \sum\limits_{i}^{n} \;\; \left(\; \sum\limits_{\nu,\alpha}^{n+1} \;\; a_{\nu\alpha}y^{\nu};_{k}y^{\alpha};_{i} \right) g^{ij} \right) b^{k}V^{\beta};_{j} \; \right] E_{\beta} \\ \\ = \;\; \sum\limits_{\beta}^{n+1} \;\; \left[\;\; \sum\limits_{j,k}^{n} \;\; \left(\; \sum\limits_{i}^{n} \;\; g_{ik} \; g^{ij} \right) \;\; b^{k} \; V^{\beta};_{j} \; \right] E_{\beta} \\ \\ = \;\; \sum\limits_{\beta}^{n+1} \;\; \left(\; \sum\limits_{j}^{n} \;\; b^{j} \; V^{\beta};_{j} \;\; \right) E_{\beta} \\ \\ = \;\; \bar{D}_{z}V \;\; . \end{array}$$

THEOREM 2: Let Y be an M-vector field defined on M. Then

$$Y \cdot S \otimes V = \bar{D}_{tan \ Y} V \quad .$$
 (15)

PROOF: We can decompose V uniquely into its tangential and normal components given by

$$Y = tan Y + nor Y$$
.

Then

$$\begin{array}{l} Y \cdot S \otimes V \ = \ (tan \ Y + nor \ Y) \cdot S \otimes V \\ = \ tan \ Y \cdot S \otimes V + nor \ Y \cdot S \otimes V \\ = \ tan \ Y \cdot S \otimes V + (hN) \cdot S \otimes V \\ = \ tan \ Y \cdot S \otimes V + h \ (N \cdot S \otimes V) \,. \end{array}$$

and since

$$N \cdot S \otimes V = 0$$

we find

$$Y$$
 , $S \otimes V = tan \ Y$, $S \otimes V$,

Since tan $Y \in T$ (M), using (14) we obtain

$$Y . S \otimes V = \overline{D}_{tan Y} V .$$
 QED.

GENERALISED LAGUERRE FUNCTION

Let V be a unit M-vector field defined on M and C be a C^{∞} curve passing rhrough a point p on M. Let T denote the unit tangent vector field of C on M. The function $K_{V/}$ defined by

$$-K_{V/} = \langle \bar{D}_{T}V, T \rangle \tag{16}$$

is called the generalised normal curvature of the curve C relative to the vector field V [Singal and Behari (1955)]. Covariant derivative of (16) in the direction T gives

$$- T(K_{V/}) = \ \, < \bar{D}_T(\bar{D}_TV) \, , \, T > + \ \, < \bar{D}_TV \, , \, \bar{D}_TT > \, . \eqno(17)$$

Moreover since

$$\begin{split} <\bar{D}_{T}(\bar{D}_{T}V)\;,\,T> &=\; <\bar{D}_{T}\left(T.S\,\otimes\,V\right),\,T> \\ &=\; <\bar{D}_{T}T.S\,\otimes\,V\;,\,T> +\; < T.\bar{D}_{T}\left(S\,\otimes\,V\right),\,T> \\ &=\; <\bar{D}_{tan\bar{D}_{T}T}V\;,\,T> +\; < T.\bar{D}_{T}\left(S\,\otimes\,V\right),\,T> \end{split}$$

the equation (17) reduces to

Hence we obtain

$$-<\mathrm{T.ar{D}_{T}\,(S\,\otimes\,V),\,T}>=\mathrm{T(K_{V/})}+<\mathrm{ar{D}_{tan}ar{D}_{T}T\,V,\,T}>+<\mathrm{ar{D}_{T}V,} \ \mathrm{ar{D}_{T}T}>. }$$

We shall call — < T . \bar{D}_T (S \otimes V), T > = L_V as the generalised Laguerre function for the direction T and a curve in M such that the generalised Laguerre function in the direction of the curve vanishes at each point of the curve as a generalised Laguerre line.

Now let us describe L_V in terms of curvatures. We have

where $\overline{K}_{V/g}$ is the geodesic curvature function of V with respect to a curve $C': \mathbf{x}^i = \mathbf{x}^i$ (s') whose the unit tangent is b, and \overline{a} is the unit vector field along the geodesic curvature vector field of V with respect to C'. Let us say

$$<$$
 \bar{a} , T $>$ $=$ $\cos \theta$.

Then

Moreover

$$\begin{split} <\bar{D}_T V \,,\, \bar{D}_T T> &= < t K_{V/n} \; N \, + \, t K_{V/g} \; X, \; K_n N \, + \, K_g b > \\ &= t K_{V/n} \; N \, + \, t K_V/_g \; K_g < X \;, \, b > \;, \end{split}$$

and if we say < X , $b > \; = \; cos \; \phi$ then we have

$$<\bar{D}_{T}V$$
, $\bar{D}_{T}T>=tK_{V/n}~K_{n}+tK_{V/g}~K_{g}\cos{\phi}$. (20)

Hence (18) reduces to

 $L_V = T(K_{V/}) + t K_{V/n} K_n + t K_g (\bar{K}_{V/g} \cos\theta + K_{V/g} \cos\phi)$ which is in terms of curvatures.

SPECIAL CASES

1. When V is normal to M and n > 2, (18) can be written as

$$L_V = T(K_n) + 2 < \bar{D}_T N, \bar{D}_T T >$$
 (21)

since

$$K_{V/} = K_n \; \text{and} \, < \, \bar{D}_{tan} \; \bar{D}_T T \; \mathrm{N} \; , \, T > \, = \, < \, \bar{D}_T \mathrm{N} , \, \bar{D}_T T > \; .$$

In terms of curvatures, (21) takes the form

$$L_{V} = T(K_{n}) + 2 T_{g} K_{g} \cos \psi, \qquad (22)$$

where T_g is the geodesic torsion of the curve C, $\cos\!\psi = < N_2$, b> and N_2 is the unit 2-th normal vector field of the curve C.

2. When V is normal to M and n=2, we have $N_2=b$ and $\psi=0$. Therefore

$$L_{V} = T(K_{n}) + 2 T_{g} K_{g}$$
 (23)

which is an expression obtained for the Laguerre function of a surface in a 3-manifold, by Weatherburn [1957].

REFERENCES

- NIRMALA, K., 1965. Generalised Laguerre Functions Of A Hypersurface In Riemannian Space, Tensor, (N.S.), 16, pp. 225-229.
- SİNGAL, M.K. and BEHARİ, R., 1955. Generalisation Of Normal Curvature Of A Curve In a Riemannian V_n, Proc. Ind. Acad. Sci., 42, 209.
- WEATHERBURN, C.E., 1957. An Introduction To Riemannian Geometry And The Tensor Calculus, Cambridge Univ. Press.