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A NOTE ON COMMUTATIVITY OF RINGS

MEHD. ASHRAF AND MURTAZA A. QUADRI
Department of Mathematics, Aligarh Muslim. University, Aligarh, India
(Received: Februay 13, 1985)

ABSTRACT

In this note we prove that if R is a semi-prime ring with uaity satisfying (xy)* = y? x%,
for all x, y € R then R is commutative.

INTRODUCTION

This is well-known that a group G satisfying (xy)2 = x2y2, forall x, y
in G must be commutative. E.C. Johsen, D.L. Outcalt and Adil Yaqub
[1968] proved a ring-theoretic analogue of the above result. In the
present note we attempt to prove that if R is a semi-prime ring with unity
satisfying (xy)2 = y2 x2, for all x, y ¢ R, even then R is commutative.
However we give an example which shows that the results is not valid
for arbitrary rings.

In preparation for the proof of this theorem, we first have the
following lemmas.

LEMMA 1: If R is a semi-prime ring satisfying (xy)? = y2 x2 for
all x, y ¢ R, then R has no nonzero nilpotent element.

PROOF: Let a ¢ R such that a2 = 0. Using the hypothesis we get
(ax)2 = 0, for all x= R. If aR # 0, then the above shows that aRis a
nonzero nilright ideal satisfying the identity y2 = 0 for all y in aR.
So by Lemma 2.1.1 of Herstein (1976) R has a nonzero nilpotent ideal.
This is a contradiction since R is semi-prime. Thus aR = 0, and hence
aRa = 0. This implies that a = 0 since R is semi-prime.

LEMMA 2: If R is a prime ring satisfying (xy)2 = y2 x2, forallx, yc R,
then R has no zero divisors.
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PROOF: By Lemma 1 above, R hss no nonzero niipotent ele-
ments. So by lemma 1.1.1 of Herstein (1976), R has no zerc divi-
sors since it is prime with no nonzero nilpotent element.

MAIN RESULT

THEOREM: Let R be a semi-prime ring with unity satisfying
(xy)? == y2x2, for all x,y ¢ R, then R is commutative,

PROOF: Since R is semi-prime ring then it is isomorphic to the
subdirectsum of prime rings R,, each of which, as 2 homomorphic ima-
ge of R, satisfies the hypothesis placed on R. So we may assume that
R is prime. On replacing y by (1-+vy) in (xy)2 = y2 x2, we get

x?y 4 xyx — 2yx2 = 0 (1)

Case 1. If Char R = 2, then from (1) we obtain x(xy + yx) = 0.
By Lemma 2.2, it gives that if x ¢ O then xy 4+ yx = 0 and x = 0
also yields xy - yx = O. Thus in every case xy 4+ yx = 0, which gives
xy = yx, as Char R = 2.

Case 1I. If Char R # 2, then withy = y | y2in (1) we get

x2y? 4 xy2x — 2y2x2 = 0. (2)
Multiply (1) on the left by v, to get

yxy + (yx)? — 2y2x2 = 0. 3)
From (2) and (3), we have

xyZx = yx2Zy, for all x, y ¢ R. 4)
Substituting (x 4 y) for y and, simplifying we get,
| Xy + yxd — xyx — xyx2 = 0. (5)
On replacing x by (1 4 x), (5) gives

2 (x%y + yx2 — 2 xyx) — 0 ©)
which implies x2y 4 yx? — 2xyx = O and with y = y -+ y2, (6) gives

X2y2 -+ y2x2 — 2 Xy2X = 0 (7)
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Also (6) gives
x2%y2 = 2 (xy)? — yx%y | ®)
and y2x? = 2 (yx)? — yx?y S
Now from (7) and (8), we have
2 (xy —yx)2 =0

which implies that (xy -— yx)? = 0. Now again by Lemma 2, xy =
yx, and R is commutative. This completes the proof of our theorem.

The following example shows that this theorem is not valid for ar-
bitrary rings.

Example. Let R = g (a b) a, b are integers (. It is

0 0

easily varified that (xy)? = y2x2, for all x, v ¢ R. However R is not com-

mutative.
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