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ABSTRACT

The linear functional and structural relationships are of great importance in the physical,
biological, economical and agricultural scinences but the estimation of these relation is not
always saticfactory.

We have shown, by an empirical examination, that when the errors are uncorrelated, the
likelihood surface contains a saddle point and that the maximum likelihood method leads to this
saddle point and not to a real maximum. We have thus confirmed the work done by Solari
(1969) and shown that MAXIMUM LIKELIHOOD METHOD fails to solve for this problem.

INTRODUCTION

We consider the situation when two properties are linearly related
and we wish to estimate this relationship from measurements of these
properties on a selected set of samples covering the range of interest
of these properties. The measurements of both properties are subject
to random errors. These properties will be denoted by variables X and
Y, but the errors in X and Y are considered to be independent.

When both X and Y are random variables, then the relation is
called a structural relation by Kendall (1951 and 1952), but according
to Lindley (1947), this relation is called a functional relation. However,
Kendall called this relation a functional relationship when both X and
Y are not random.

The problem, which has described above, has attracted much in-
terest over a long period. For example, Lindley (1947), Madansky
(1959), Sprent (1970), Lindley and El-Sayyad (1968), Solari (1969),
Bartlett (1949), Berkson (1950), Tukey (1951), Lindley (1953), Kendall
and Stuart (1970), Copas (1972) and Taylor (1973).
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Theory

‘Suppose that there is a functional relationship between true values
X and Y, and that observations, denoted by x and y, have errors which
are not correlated. Under these situations the following assumptions
are made [Lindley, 1947; Lindley ve El-Seyyad (1968); Kendall and
Stuart, (1970)]:

a) n pairs of observations are

X ¥ib (% ¥2)s o5 (Xns ¥n)-
b) n pairs of true values are

(X Y)), (X3 V), .y (Ko Yo
c) xj = Xi+8ié-

i—1,2,...,n

yvi = Yi+eg )
and
E (8i) = E (e5) = 0, Var (3;) = o’ Var (g;) = &%, for all i;
Cov (31, 3;) = Cov (g, 55) = 0, 1 &£ j;
Cov (3i, &) = 0 for all 154
E (xi) = Xj, E (yi) = Y;, for all i
and
xi ~ N (Xy, 0%), yi ~ N (Y3, 6%)
d) The functional relationship between true values is
Yi=a+ X3, 1=12,...,n 1)
Under the above assumptions we may write the log-likelihood

function (Akar, 1975) as;
2 (x - X5)?

logl, = — nlog 211 - nlogsx — nlogsy — —%— [ = —+
X

Z((y1=3) = F i =) ] (2)

Gy

We wish to estimate the (n 4 3) unknown parameters f, o',
o’y and X, X,, ..., Xj. For this reason, we have to obtain maximum-
likelihood equations of (2) by differentiating w.r.t. (with respect to)
B, ox, 6y and X in turn and equating to zero, as follows:
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) 0 e 20 (e B =0 ()
ii) aal;’—zng — 0 == n8% = 3 (x; — X;)° (4)
i) G — 0 s 8~ 3 (- 9) - B (% -9 (5)
Bl -Bi-9) _ (6)

Sy

where a cirfumflex denotes the maximum-likelihood estimators. From
(6), we obtain '

Xy = Bok (yi—9) + &x + B2 84X (7)

&y + B %

Thus we obtain the result as

(- %) = £ (fi —ﬁf); yi-5) "
Gy 0'x
and
(i-9) - B (% - %) — D) b2 9) )

ezy + ﬁzazx
Subtituting (8) and (9) in (4) and (5), and then dividing (4) by (5), we
obtain,

B = ‘ (10)

This is as a disturbing result since it implies that the maximum
likelihood estimator of the slope is either minus or plus the square
root of the variances ratio of the estimators of the variances of 3 and .

In fact, the above result is due to Lindley (1947), but as he stated
it will not generally hold between true values, so that the maximum
likelihood method bireaks down for this instance, and consequently,
we can not estimate all three parameters f, 6, and oy consistently.



104 MUSTAFA AKAR

However, Solari (1969) proved that non-existence of the maximum
likelihood solution in this situation and demonstrated that (10)is a
saddle point of the likelihood surface rather than a maximum. Futher-
more, it might be useful here to mention the heuristic argument by
Kendall and Stuart (1970). According to them, without prior knowledge
of ¢’ and o’y there is little that can be said about the existence of a
linear functional relationship; therefore, to make our problem definite
we need only the eccentricity of the elipses, i.e. the ratio &%/ c%.

Apart from these arguments it should become apparent, from the
graphs which will be presented in the next section, why we need such
an assumption that the ratio of the variances is known.

Let A = 6%/ o’ and put it in (7), we obtain,

~ B (vi — 7 . < B2
A+ {32
If we substitute 52’1 from (11) into (3), we obtain
—B? Sgy 4 B (Syy — 2 Sxx) + 2Sxx = 0 (12)
where,

Syy = Z (YI - }_7)2, SXX =X (Xi - )-K)Z and Sxy =X (Xi - 3-() (YJ - }_’).
The equation (12) is a quadratic in f§, we can easily solve it, whence
B= o 4 (a2 + )" (13)
where
Syy — ASxx
28yy

The result (13) is due to Lindley (1947). Similarly, the maximum
likelihood estimates of other parameters can be defined.

o =

Empirical Investigation

The main purpose of this section is to show empirically why the
maximum likelihood method fails to yield satisfactory estimators for
alinear functional relationship when both variables are subject to
normal independent error. Solari (1969), has already proved that an
application of the method of maximum likelihood leads to a saddle
point of the likelihood surface rather than a maximum; therefore it
becomes apparent that our aim is to carry out a full examination of
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the likelihood surface so that we may ve able to confirm her results
and also see how satisfactory the assumptions which where made in
the previous section, are in obtaining the maximum likelihood estimator
of f. In order to do this different sets of graphs were drawn using the
computer at Aberystwyth University and U.M.R.C.C. (University
of Manchester Regional Computer Center).

Initially, we have supposed that there is a functional relationship
between the true values X and Y as Y = 8 4 1.6X, and then, having
chosen the true values of the X’s to be between 10 and 80 inclusively,
the random variables were generated by appliying the Box and Miiller
method, from the distribution x; ~ N (X, ¢%) and y; ~ N (Yj, 6%)
for all i, where the values of 6x and oy were 8 and 10, respectively.

After obtaining the data, the fitted regression lines of y on x and
x on y are calculated and the results are, respectively, § = 14. 144 + 1.
39x, with residual standart deviation Sy = 1.33 and % = - 2.61 -
0.61y, with residual standart deviation Sy = 8.77. Then, to ensure
that the true values of cx and oy were covered, we multiplied the stan-
dart errors by 1.5; we thus obtained the range of f, ox and oy for
empirical investigation

139 < f < 1.65
0 < ox < 13.10
and 0 < oy < 19.10

We then proceeded to draw four sets of graphs to represent the
likelihood surface as fallows:

(a) The First Set of Graphs

This set of graphs consists of cx against ¢y and Incy against Incy
for a range of given values of 5. To draw this set of graphs we used the
following funection,

S
2 (c% + f o%)
Where, L* = logl. 4 nlog 21T and the sign of L* is negative and

S=2X B x-%- -9

The function (14) was obtained from (2) after making some changes
on it. The equation (14)is non-linear form and so when we want to plot
likelihood contours for either ox against oy or log ox against logoy for
given values of § we first have to obtain the coordinates of ox and oy.

L* = —nlog ox —nlog oy —

(14)
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After obtaining the coordinates, this set of graphs was drawn. Two

examples of this set of graphs were presented in Figure 1.
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On examination of graphs in Figure 1, the following conclusions
may be made.

First, passing from the bottom left hand corner to the top right
hand corner would involve the crossing of a ‘maximum’ of the likelihood
surface. On the other hand, passing from the bottom right hand corner
to the left hand corner would invelve the traversal of a ‘minimum’.
Therefore, we conclude that the maximum likelihood surface contains
a saddle point. The so—called ‘maximum likelihood’ solution given by.

Sxy
p

Where Six = X(xj - %)% Syy =2 (yi—¥) and Sxy = X (x;-X)
(yi = ¥), was shown by Solari (1969) to be a saddle point rather than a
maximum. In order to demonstrate that our saddle point is the same one
which she predicted, we calculated the f,cx and oy as shown in below
table.

» 2n6% = Syy— BSxx

B = + ['—“‘Ssyy ]1/29 2n6’ = Sxx -
XX

Her notation p %) .\/_@

Our notation B 6y Oy

By calculating 1.516* 4.325% 6.556%

Given 1.600 5.466 3.986

The result (*) in the above table coincides with our saddle point;
consequently we have shown empirically that she is right.

Secondly, there is very litte difference between the graphs in
Figure 1.

We notice that when ox and oy are both small the contours are
more closely grouped together, indicating a steeper slope to the surface
than that in places where ox and oy both take large values.

Thirdly, for a given value of either ox or 5y we always get a maxi-
mum by drawing a line through the given point and perpendicular to
either ox or oy respectively. This means that for a given value of either
Gy Or Gy we may estimate either oy or ox and § by the method of maximum
likelihood.

Lastly, if we rotate a line passing through the origin between the
ox and oy axes, then we always obtain a maximum along our line. This
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implies that for any given ratio of variances, we could estimate 8 (slope)
and the variances.

Consequently, we conclude that we cannot estimate all three para-
meters 8, ox and oy consistently by applying the metod of maximum
likelihood unless given either ox or oy or their ratio.

(b) The Second and Third Sets of Graphs

The second set of graphs consists of o, against § and logoy against
B for a range of given values of oy but the third set of graphs consists
of 6y against § and logsy against f§ for a range of given values of oy.
The following formula was used for drawing these two sets of
graphs:
VP +H2Qf+ @ =0 (15)
This equation was obtained from the function (14). It is quadratic
in # and so the roots are;

QFQ-¢z)”
2

ﬁ2a2 =

where ¢ = 20¢°% (L' -nlog ox — nlogoy) - Sxx
Q = Sy
@ = 26% (L* - nlog ox — nlog oy) ~ Syy
L'{' = - L*.

One example of the second set of graphs was given in Figure 2.

On examination of graph in Figure 2, there is an evidence of a
saddle point whose approximate coordinates and height are as given
(+) in Table 1, which presents a summary of the main features of the
surface.

If we examine L* along the line paralel to the f—axis which passes
through the saddle point, we find that as we increase or decrease (3
from saddle point, the surface goes down-hill for both cases and the
saddle pkoint is therefore a ‘maximum’ in the § direction. However,
the saddle point is a ‘minimum’ in the Incy direction.

One example of the third set of graphs was given in Figure 3.

On examination of the graph in Figure 3, there is evidence of a
saddle point whose approximate coordinates and height are as given
(+) in Table 2, which presents a summary of the main features of the
surface.
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Figure 2. Contours of L* for Ing, against slope when
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Table 1. A summary of the main features of the L*- surface for g, = 5.

109

B lng, L* For Varying
.46 0.48 { -144.71 | Saddle point ()
.01 0.48 | —693.71 | Approaching minimum
.46 0.48 | -144.71 | Max. = Saddle point B
.00 0.48 } -1504.75 | Approaching minimum
.46 | — 3.00 —-58.55 | Approaching global maximum
.46 0.48 | ~144.71 | Min. = Saddle point Oy
.46 1.98 [ -126.01 | Approaching local maximum
.60 2.08 | -125.34 | Local maximum
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Figure 3. Contours of L* for cyagainst slope when o, is 4.

Table 2. A summary of the main features of the L*-surface for Oxy = 4.
p Oy L* For Varying
1.56 4 -131.73 | Saddle point ()
0.01 4 | -1067.95 | Approaching minimum
1.56 4 -131.73 | Max. = Saddle point B
2.91 4 —204.89 | Approaching minimum
1.56 0.01 28.07 | Approaching global maximum
1.56 4 -131.73 | Min. = Saddle point oy
1.56 9.01 | -129.74 | Approaching local maximum
1.48 9.4 | -129.27 | Local maximum

(c) The Fourth Set of graphs

The fourth set of graphs consists of A (A = ¢’/ 0’x) against f
for a range of given values of ox.

The following formula was used for drawing this set of graphs:

Ap2 4 2Bf + C = 0 (16)
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This equation was obtained from the function (14). It is quatratic in
f and so the roots are:

B 4 (B2- AQ)'
/31,2 == A

and where
A = 2% (L*-2nlogoy, — _’5_ logh) — Sxx
B = Sy
C = 2n6% (L+ - 2nlogoy — _’21_ logh) — Syy

L+t = _L*

One example of the fourth set of graphs was given in Figure 4.
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Figure 4. Contours of L* for lamda against slope when o, is 4.
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On examination of the graph in Figure 4, there is an evidence of a
saddle point whose approximate coordinates and height are as given

(+) in Table 3, which presents a summary of the main features of the
surface.

Table 4. A suammary of main features of the L*-surface for 5, = 4.

p A L* For Varying

1.54 | 1.80 | -131.30 | Saddle point (+)

0.01 1.80 | -639.12 | Approaching minimimu
1.54 1.80 | -131.30 | Max. = Saddle point B
2.91 1.80 | -202.93 | Approaching minimum

1.54 0.01 -82.96 | Approaching global maximum
1.54 1.08 | -131.30 | Min. = Saddle point A
1.54 5.01 | -129.56 | Approaching local maximum

1.46 5.40 | -129.26 | Local maximum

From the second, third and fourth sets of graphs described above,
we conclude that we cannot consistently estimate either § and oy for
a given value of oy or f§ and oy for a given value of oy; therefore, the
maximum likelihood method fails to yield any satisfactory estimators
for this instance. ’
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