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ABSTRACT

Some reflection principles for the solutions of a class of fourth order elliptic differential

equations with singular coefficients are obtained.

INTRODUCTION

In this article we will consider the elliptic differential operator

02 k; 0
(7 + )

2 x24 X 0 x;

M =

Ay =
% i=1

where k; are real constants. The function u is called X-biharmonic
[Celebi (1968)] in a region E of the n-dimensional space, if u € C4 (E)
and satisfies the partial differential equation

— A2 [ =
AN (AE U) = Ay U=0
Similarly u is called Z—polyharmonie, if u € C2P (E) and satisfies
-1 =i =
Ay (AB1TU) = ABU =0 (1)

In the following, we will give some representation formulas for
Z-polyharmonic functions of order p and will obtain a reflection prin-
ciple for Z-biharmonic functions.

REPRODBUCING Z-POLYHARMONIC FUNCTIONS

Let us point out two properties that the operator AE has. The

first one is -
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AP N1 U= Au AP U @)
DI ST xj X
where
&2 k; 0
Axi' T xy + X 0 xi

The equation (2) can be obtained easily by an induction from
AZ AXi U= AXi AZ U.

The second property of the operator AE is

LEMMA 1. Let u € C2rt+t (E). Then, for p ¢ N

c U=x 0

3Xi 3Xi

AP x ANUsrapa AV (3)
b) b)) xi Ty

PROOF: We will make use of induction in proving this lemma. By
a direct calculation we obtain

0 0
Dy %1 PET U=x o AEU+2AXiU 4)
Now let us assume that (3) holds for p = «:
o 0 0 o -1 :
AE X e U=x P A2U+2mAxi A U 6))

Applying the operator AZ to both sides of (5) we get

A LU A 2 AT U4 208 A AT (6)
= 0 x4 = 2 x; = DI S S Y

On the other hand, if we replace u by A%y U in (4) we obtain

0
0 X3

0
aXi

Ay A U= x AP urea A*U ()
> b xi h

To complete the proof we should substitute (7) in (6):

o
Aoc+1 - U= x 2
p2 0 Xj 0 Xj

A<;+1U+2(<x+1) Ny A;U

Now we can state the result on reproducing X—polyharmonic func-
tions of order p from a given X-polyharmonic function of the same
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order. In the following we will denote a solution of (1) by up {k;,...,kn}.
Up (E) will symbolize the set of all solutions of (1), in the domain E.

LEMMA 2. Let up (k;....kn} € 9p (E) be given. The function
defined by

Up

x;P-8

8

is also a Z—polyharmonic function of order p, for x; # 0, p > s and
p.- s € N.

PROOFEF: It is easy to varify for a function w € C2P (E) that

W ow

:(2_ki)W+XiZAEW‘°2Xi (8)

3.
x4 AZ Xi aXi

Now, let us apply the operator A° to both sides of (8), and use Lemma 1.
%

ow
3X1

2 w 2 2 R 2
L\Z (Xi3AE -;i—) = (2-k;) AZW + L\E (Xi"AZW)_‘z AZ Xj

. 0
— [+ + x2 A+ 63 -] ALw )
From (9), we see that if w ¢ 9/, (E), then
3 Ay —:.:_ & U, (B).

This proves the lemma in the case of s = 1, p = 2.

Let us assume that

w ow
s 3z = P2 p-l—k) w+ xPA w2 (p—-2) 31—

xiP A\

holds. Then,

w 1 w
s+l — x; P+l —_ —_—
E AE x;P-1 = AZ x;P-2 ( )
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= (p—2) (p—1—k) w + xPA

Xi

ow

—2 (p—2) x +2 (p—2) w

Xi

is obtained. Using (8) we get

x; P+ AZ A (p—1) (p—ki) w + x;2 AZ w—2(p—1)x; g:: (10)

x;P-1 -
Now we can show that

X A €Yy (E)

b)) Xip_l
by applying the operator AP to both sides of (10):
Yy applying P 5

w

A [ oy o] = 0D ek A w+ AL 2 AW

p Jdw
—2(p—1) AL (xi o )

The property given by Lemma 1 yields

P w
A | Ay o | = =D k) Ay w

Xip—l

0

—2 (p—1) [2p A, A;“l R A‘; w]

o

6Xj

+ a7 [2et Agw + 4 Ayt Alw]

For the sake of simplicity we will assume w € 9/, (E). Then, by a recurs-
ive calculation, we get

w

D%
Xip_l] = —dp =) A AW

a7 [me Ay
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17
5Xi

+4 AT Ay w AT AL w
T z by z

=—dplp—DA AVIwB—) A AP w

+ 8 (p—2) A AP w e+ AP2XE A w
) 2 P b
and finally
= [~p(p—1) + 8 {(p—1) + (2
DA, AV

=0.

That is, if w € 9p (E) then there exists a up Jky,....kn} € ?p (E), such
that

w

XA = up {kps. . - kn}

xip—l

To complete the proof of the lemma by induction, we will show

that
8 W
x; P48 —
e o ()

is a S—-polyharmonic function of order p, for s = 2. First of all, notice
that

w v
X042 A = xiP*2 A
y xP2 z x;P
where
w
v = xiP A ———
U=y xyp-2

The function v is a Z—polyharmonic function of order p — 1. Obviously
v € Yp (E). So there exists a function uy {ky,....kn} € Up (E) such that

v w

2
xiPt2 A ( =7 ) N AZ ( 2 ) = up {k;,...kn}

Pl

For the last step of the proof, assume that there exists a up {k;,
...kn} € Up (E) such that

SN ( w >: up fpre . ko) (1

x; P~V
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for a given v € N. Then we can write

) 74 w
x; PVl A +1 (________) = x;PHEL A
¥ z

x;b-v-1

¥ w
PVl [P —
(X1 h AZ X.D—V~1 )/
i

\
x;P-1 g (12)

Using (11), we obtain

v W
X1p+'V~1 AE —w & ?lpvl (E)
and
v W
;Ptyv-1 _
le AZ xip_v_l € WD (E)

So, from (12) we reach the result that there exists a function u, ) S
kn} € 9Up (E). such that

w

ptvil AHI
X. - —
1 Y x PVl

== Up {kl" . -,kn}
forp —v—1>0,if w e Yy (E).

REMARK: It can easily be shown that Lemma 2 holds for p < s
by using the results obtained elsewhere [Celebi (1968); Siiray and Celebi
(1973) 1.

A REFLECTION PRINCIPLE IN THE CASE OF TWO
INDEPENDENT VARIABLES

We will introduce the following notations:
H= {P:x > 0},
D= {P:x =0}
G = {P:x2 4+ y2 < 12}
where P ¢IR? andr eIR+. T and C, are the closures of H and Cy, res-
pectively.

THEOREM 1: Let u, {k;, k,} € %, (G n H). If the function u,
{k;, k,} satisfies the condition ’
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a) lim x*1 u, {ky, ky} =0, fork;, >0
x>0

or

b) lim u, {k;, ky} = 0, for k;, < 0

x-0

in the domain S < D, then u, {k;, k,} can be continued to the region
Cr n («~H) in the form

%, (—xy) = —uy(x,y) + 46—k—ky) xI7 yl-k L 4(5—k,) x3k

YT+ AG—ky) xITH y 2 4 A ()R yie x4yt
Xy 4+ x2 4 y2]} (12)

as a S-biharmonic function, where «~ H is the complement of H.

PROOF: In order to prove the theorem [Rabadi (1983)], we have
to show that the following statementis hold:

i) The function u*, (—x,y) defined by (12) is Z—biharmonic;
ii) If (x,y) € C; N (~ H) then
w( ) = ) + 46— ykg) ()1 yik
A5y R 45— ) ()i v
+AZ {X1—1§1y1--k2 [X4 _|_ y4 ..i_ XZyZ + x2 + yZ]};
iii) The function
gu2(x,y) , (x%y) e G n H
Uxy) = | _
uxy), (xy) € G n (~ H)
is continuous on D.
The first statement follows from a direct computation. If we apply

the operator AZZ to both sides of (12}, we obtain

2
AT u¥, = 0
5 2

which implies that u*, € U, [Cr n (~ H)].

The second statement is trivial.
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For the last statement we should prove that

a) lim x¥! u*, = 0, for k; > 0
x-0

or

b) lim u*, = 0, for k; < 0.

x>0

But this is evident from (12).

Thus the function u*, defined by (12) is a continuous extension of

the function u, to the region C; n (~ ﬁ) Moreover, we easily can ob-
tain that x¥1 U (x,y) is analytic in a domain not containing the x-axis,
if xK1 u,(x,y) is analytic.

A REFLECTION PRINCIPLE FOR I-BIHARMONIC
FUNCTIONS

First of all, we will introduce some more notations in R®, similar to

that of the section ahove

Cei = G n H;

where P € R and —Ei,_]—)i, Cp. Cp.; are the closures of H;, Di, Cr, Cpys, Te-
spectively.

THEOREM 2. Let u, {ki,....kn} € 7, (Crsi), and let k; % 0 for
a given i. If the function u, {k,.....ky) satisfies the condition

a) lim xi7% yu, ki,....kp} = 0 fork; >0
PP
0

or k.~1
b) Im x; ' u, {kj,....kp} = 0 fork; < 0
PP
for P, € S < Dy, then u, {k.....ky} can be extended continuously to

the domain G, n (~ ﬁl) in the form of
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Vu(P) — o 2B (13)

£ * ——
uP*) = k—1 | T T x

as a X—biharmonic function where P* is the refiection of P with respect

to Dy, and ~ H; is the complement of H,.

PROOF: To prove the theorem, we must show that the following
statements hold:

i) u*,(P*), defined by (13) is Z-biharmonic;

1

i)y (P) = [u*z(P*) A _ﬂfg—*)—] (14)

z

iii) The function

w(P) : P e G
U(Xl,...,Xn) = < _
Cusy(PY) : P* e G n (~ Hy

is continuous on Dj.
For the proof of the first statement, we can write

n 02 k: a 0 o2 k: o @
p ( + ) 4 1 ] u*(P*
=1 \ 0x% Xj 0x o(—x;)2 + (—=x1) o(—xi) AP

I

o2y 1 \ u,(P)

= Ay | o1y [uz(P) — XA —~———; ] %
- 1 2 2§ . uyP) |
= by [ahm® — oy e sy, ]

and by Lemma 2
[;\:; u*,(P*) = 0.
So, the function u*, (P*), defined by (13) is Z-biharmonic.

The second statement is a consequence of a direct calculation.
First we will substitute (13) in the right hand side of (14):

1 . pEy s u*,(P*)
T [ s, ]
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. P P
T D7 [uz(P) — 23PN '%1)“ RS ((ng > _ul:(cl——ﬂ

1 u,(P) u,(P)
= G [P 2, S el e, 10

& uy(P)

axi

+ Ay (A _uy(P) ) — 2 X31AE

= 1 [uz(P) — kix;3 3 (2—ky) x373uy(P) 4 i_l AE%(P)

v

2 0 u,(P { ki 2
- = 08114(i ) i + x3i3 = A guafP) + xiA;uz(P)
0 ) . o u,(P)
T2 AguP) =2~ ]
i o u,(P
= Ta—1)2 [(ki—1)2 uy(P) + 2 kixy Z) gi
2 o a, (P)

+ 2 x3

AE u, (P) — 2 x;3 A,

3Xi 8xi

1 0

—2 % (Az oxi | 0x AZ ux(P) > ]

= uy(P).

This shows that the second statement holds.
In order to obtain the third statement, we will assume

PeC n (~H)and P, e8S. Then, it is easy to verify that either

lim x17% u*, {k;,.. Lkn}l =0 fork; > 0
PP,

or
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lim x¥-1 a*, (k.. skn} =0 for k; < 0.
P->P,

Thus, we have established the reflection principle for X-bihar-
monic functions with respect to a singular hypersurface.

REMARK: The special case
ki=2andk;j=10,j #1,j=1,...,n

of the above theorem gives us the results obtained in Armitage (1978),
Duffin (1955) and Rabadi (1983) for the harmonic functions.
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