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ABSTRACT

A sample drawn in several phases refers to selectîon of a large-sized preliminary sample ın 
whiclı some quick and inexpensive metlıod of measurement is applied. A subsample is drawn and 
a somewhat more elaborate method of measurement is used and then successively smaller sub- 
samples are drawn and successively more expensive, elaborate and accurate methods of measu­
rement are applied. This paper furnishes estimator and variance expressions for the three-phase 
design. The examples, arising from remote sensing applications, illustrate estimation of the po- 
pulation mean of a numerical characteristic and the population of a binary variable of interest. 
Eormulas for optimum sampling rates are shown to be of the same form for the the two types of 
variables.
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INTRODÜCTION

The multi-phase feature of sample design refers to drawing a large 
preliminary sample, with a subsample and possibly with sub-subsamples. 
Data are eollected on the variable of interest only from the smaUest 
sub-subsample. The more inciusive samples have data on surrogate
or auxiliary variables that are closely related to the variable of in- 
terest but are less expensive to collect. In order for three-phase sampling
to be worthwbile there must be two surrogate or auxiliary variables
to the variable of interest; while two-phase sampling requires only 
One auxliary variable. The three variables need to be well ordered by 
cost of measurement and correspondingiy by their reliabilities in me- 
asuring the vaiable of interest.

Because saınple design terminology is not alway8 uniform, let’s
review some designs that are eoneeptually akin to the multi-phase
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one and perhaps make clearer what the multi-phase feature offers. 
Multi-phase designs can easüy be distinguished from multi-stage de­
signs. With multi-stage sampling there are a number of large first 
stage units and each is broken into several second stage units, and
so forth. Multi-stage sampling involves selecting a few first-stage
units and in these a few second stage units are selected, and so forth. 
Two-phase sampling designs should also be distinguished from two- 
step designs. Here the first step is a small preliminary sample and the 
gize of the second step depends
step as well as on

on the variability found in the first
some pre-set amount of precision required. Both 

multi-stage and two-step sampling theory may involve only the one 
variable of interest while the multi-phase feature always has the other 
auKİliary variables.

There are two variants of multi-phase sampling that are helpful
to keep in view even though our case differs from them. The optimum 
preliminary sample size may be calculated to be larger than N, the 
population size. Using auxiliary Information available on ali members 
of the population, such as with a regression estimator, is thus seen to 
be a variant of multi-phase sampling. Another variant is a design 
whereby the preliminary sample is disjoint from the smaller sample 
and there are thus no paired observations. There are cases when the 
calibration factor is well known and there is thus no great help in this 
regard from having paired data. It may also be physically impossible 
to have paired data or it may be very costiy. Having spent some time 
on what 'we won’t be discussing we’d better get on with our topic.

The archtypical case of multi-phase sampling arises when mea- 
surement of some variable occurs naturally with differing levels of 
intensity. It may be possible to obtain vague impressions by visual 
scanning or by long—distance reconnaissance; more precise Information 
can be obtained by use of more elaborate equipment and closer ap- 
proach. Need for multi-phase sampling arises in various fields. In
agriculture an estimate of land under irrigation in California involved 
satelhte photo data, then aerial photos and finally ground determina- 
tion (Colwell 1977). In atmospheric pollution studies of CO levels, the 
investigators used space shuttie radiometry, aircraft radiometry and, 
finally, aircraft-collected air samples (Reichle et al. 1982). A study of 
diseases of tobacco inciuded eye—scan in the field, close-up visual 
inspection of plants, and laboratory study of leaf samples (Main and 
Procter 1980).
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The corbon monoxide variable was essentially numerical (parts 
per billion by volüme) while the irrigation example was also numerical 
in giving percentage of land irrigated on land areas. The tobacco di- 
seases data involved a dichotomy when the individual plant was used 
as the unit of analysis. That is, the plant is disseased or not. Our deri- 
vation of variance formulas, estimation formulas and optimization 
formulas has been done separately for these two cases the one where 
one might suppose some similarity in distribution to the multivariate 
normal and the other where the variable is a dichotomy. We will first 
review the results that appeared some years ago for the multivariate
normal case as background to some new results on the dichotomy case.

THREE-PHASE SAMPLING TO ESTIMATE 7

As a fist approach 
done at ali phases. Also

we will suppose simple random sampling is 
we suppose the population is so large as to be

effectively infinite. Denote the first phase observations as Wj1’ W2,

. . ., Wnı, the second phase ones as Xj, X2, . . ., Xıj2 and the third phase
ones as y^, . . ., yn3. The overlapping observations are taken to be
the first ones in each set. Since the first observations in each set are
from the same unit we can describe the multivariate normal distri-
distributions for w1’ and Yj as:

■)

and

yi yx-w-Xı + P ywx'''^; '7^ywx,

Î 1 v/h N (v +

N(X + p p

The population mean, defined as Y SYi/ N, is, in accord with our
supposition of large N, very nearly equal to E (y) = /Zy, and so we 
can take to be the parameter of interest.

„2

(^ıCfrı

Nine parameters have heen introduced. They are:
ff'.2 X'W5

X, ^yx'w and a'.2 
x-xw They can be estimated as follovvs:

.2(1) Wj, vvj, . .., Wnj are used to estimate and o' (2) one then takes
the first nj w's to be fixed and, along with
'z, /3xw and cr‘3.

Xı, X,

x.w; and (3) the first
-2’ • • 5 Xıi2 estimates

w's and -x.'s are treated as fixed
while the y's are used to estimata X, (iyx.

“1

V,

The estimate of jMw is denoted w" and is based on ali n^ obser- 
vations on the first phase. In order to estimate E (x) = the po­
pulation mean of the x’s, one notes that
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E(xı) E (v +

A x' ~ + bx,yW'

(2.1a)

(2.1b)

(2.1a)

where the single prime denotes nse of the »2 second phase observations. 
The last expression (2. la) can be written

X]r5 2 — X 4~ IJk» ■vv') (2.2)

which is the two-phase regression estimator (Cochran 1977, p. 339) 
of /Zx. The final step is to express /Zy as

E(yı) E (X +

7. Şyx.wf^2C T' (^yw.x/^w

Ay- byx.,v^ - by^.xW + + l’yw.x’w'

(2.3a)

(2.3b)

(2.3c)

= y + l’yx.w

+ 1*;
= yır,3 say.

(X' - x) + İJyx-wKw (w'' - w')

ywx (Vf" - w) (2.3d)

(2.3e)

the three-phase estimator of Py. It is oftentimes reasonable in appli­
cations to nse the ordinary least squares (OLS) estimators of the b's. 
Whenever the sample sizes are small or when other Information is 
clearly superior, there may be quantities better than these OLS es­
timators to insert for the b’s. Under repeated sampling ali the differences
of means in yir,3 (see (2.3d)) average to zero and the estimator yjj..',3
İS seen to be unbiased. It’s variance can be easily obtained from the 
three-by—three covariance matrix of the variates y, x, and w.

The entries of this matrix are (7‘.2y’ and f7‘, on the diagonal
with (7yx, (7xw and Cxv, in the appropriate off-diagonal positions. The
total variance of y is o^y. Using knowledge of 
a residual variance of

w to predict y leaves

<T'.2 __
yv/ — - O'.2 yw /ö-.2 W (1 - r-.2 ' 

yw,.) (2.4)®'y 4 =

t7^X W

,2 
ywThe reduction in variance here will be denoted V, = o I „2O W.

The additional reduction in the residual variance dne to adding know- 
ledge of x is found to be:

^2 — ('^xy CTxw I I (<yx" - a-.2Xw O'̂ ).

A s% (1 - rxy - r.yw - rxw + 2rxy ry3^ rx„) / (1 - r.2 ■
Xw..)

To make the notation most convenient let Vj = 
The variance of yir,3 then becomes:

'’^y

(2.5)

- V,- V3.
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V(yir,3) = VJn1 + VJn,+ yjn, . (2.6)

An interesting example of three-phase sampling was fumished
by Colwell (1977). The objective was to estimate the percentage of
irrigated land among farm land in a portion of California. The data
are shown in the Table. Although there wercn Uj
the first phase sample

1 = 1292 pixels in
we only have individual data for the n.̂2 = 88

cases where data are avaüahle from both satellite and aerial photos.
The table also shows the ^2 = 16 ground-based observations. The
sample was stratified by county and thus we should subtract county 
means from ali observations. However, some counties have only one 
ground-based observation. Rather than loose this third phase Infor­
mation we defined two combined couties (conunties 2,5 and 6 versus 
the others) and subtracted these means before computing coveriances.

In computing the means y, x, x', w and w' we used stratum Aveights 
of .3125, .0660, .1351, .0369, .0229, .0919, .1607, .0942 and .0798 
for the nine counties. The value for w" was found as -iv" = 80.84 
(from Colwell 1977, p. 26). One may verify from the data in the table
that y = 75.09, X = 74.34, x' = 71.70, w = 71.94 and w' =
71.19. The estimator yir.j awas thus computed as:

yır, 3 = 75.09 + .4332 (71.70 - 74.34)

+ .4332 X .8586 (80.84 - 71.19) + .5992 (80.84 - 71.94)
= 82.87 .

The values for byx.„ = .4332 and b7wx — . 5992 vfeıe found
by ordinary least squares regression calculations on residuals after 
subtracting combined county means while bx„ = .8586 was based 
on residuals from separete country means. The correlations among 
residuals from combined county means were:

rx„ = -910, ^yw — .815 and r.■yx = .823, with Standard deviations
s,'w — 21.67, Sx = 21.75 and Sy = 16.34. Other estimates of these
quantities are available but will be in the same neighborhood. This 
shows that Vj s 177.34, V2 ~ 25.50 and Vj 64.15, so that an 
estimate of V (yirîs) is

V (yır,3) = 177.34/ 1292 + 25.50188 + 64.15/16

= 4.44 . (2.7)

The estimate and its Standard error, both in percent, are thus 82.9 
i 2.1. The sampling coefficient of variation is about 3 % which is 
fairly good.
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EKTENDED CONSIDERATION WHEN USING yır ■̂>3

The cost such a survey can oftentimes be reasonably represented
by a linear cost function namely

Ct = + CjU, . (3.1)

The per unit costs increase as we go from satellite photos to ground- 
based observations. If both the variance factors V,, and Vj and
the cost coefficients Cj, and C'p
rates can be calculated as:

'3 are known, then optimum sampling

Opt (Uj i rij) = V ^1^2 I

opt (nj/n,) V V.c^/v^c,. (3.2)

If both Cj/ and Cj are judged to be about 10, then the optimum 
sampling rates are found as 13 and 1. The actual rates were 14 and 5. 
If this judgement is correct then the aircraft was somewhat overused 
and could perhaps be dispensed Avith. This might become more apparent 
if the various fixed costs of the three types of Information had been 
inciuded in our cost function.

The underlying distributional assumptions have inciuded inde- 
pendence as well as normality and in the present application some at- 
tention needs to be paid to the possible violation of these assumptions. 
There would likely be some negative skewness in the distribution of
yir’3 because the values of y as seen in the Table are percentages
near 80 The ske-wness coefficient for a binomial binary variate is 
Gj = (Q-P) I -s/ PQ where P is the proportion of ones an Q = 1-P.
For P = .8, one finds G, 
size of 30 should yield a 

1.5 whjch is fairly skewed. A sample1
sample mean whose confidence intervals at

a nominal 95 % coefficient have coverage probabdities bettceen 94 % 
and 96 % (see Barrett and Goldsmith 1976). The sample size in this 
example is n^ = 16 and thus some caution is needed. If the 82.87 
estimate is low it may be fairly far below but if it is high it is not very 
far above. We’re not just sure how knowledge of sketvness should 
affect the use of an estimate but it should probably be announced.

The other aspect is idependence of the observations from one point 
to another. The issue here involves adjacency correlations on the map 
and sample selection methods. Even if there is no adjacency correlation 
the finiteness of the population, along with sampling without repla- 
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cement, may induce negative correlations among the observations. 
Sampling in the present case was simple random and thus some negative 
correlation tvill appear. This, however, will only affect the ground- 
based observations which are supposed to be measured without error. 
The sampling fraction at this last phase is about 16-from-1292 and 
is thus too small to affect the sampling variance.

The aircraft and satellite «juantities are produced by a stochastic
process (a, so called, interpretation operation) which refers to an effec- 
tively infinite population. For these processes the possibility of ad- 
jacency correlation is quite a likely one. Given that one pattern of 
sample selections is more clustered than another, one could cxpect 
larger variance in one case than the other. However, under simple 
random sampling these effects would average to zero and thus we 
ignore them.

THREE-PHASE SAMPLİNG FOR RINARY DATA

We turn now to the case of a binary variable of interest. This may 
represent simply a change from area sampling to point sampling. That
is, we could estimate the percentage of irrigated land from a sample
of points as well as from the pixel-areas that were used above. Mea­
surement is, of course. a somewhat different operation when dealing
with points rather than areas. NVorking with clusters of adjacent points
would be more
any comparison of points to 
two approaches to the same

akin to the use of areas. We wiU not at present, attempt
areas as sampling units. We mention the 
question by way of transition. It is our

purpose now to furnish variance expressions and optimum allocation
formulas for three-phase sampling with a binary variable of interest.

The binary two-phase
bein (1970). The three-phase case that we

case has been worked out by Aaron Tenesn-
will be treating here present

no great novelties but one can see how complicated it would be to 
formulate a genaral treatment for te multi-phase case. It seems unli-
kely that a sample with more than three phases v/ould be a practical
survey design, although successive occasions data may lead one to 
such a possibility.

For theree phases of binary data the triply—measured obser-
vations have the true measurements on
a less fallible classifier (LFC) and a more

the variable of interest plus 
faUible clasşifler (MFC). The

eight possible freguencies here vili be denoted fük where i = 0 or 1

Uj
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represents true measurements, j — 0 or 1 is the less fallible classifier 
and k = 0 or 1 telis about the more fallible classifier. There are n2 - 
Uj observations for wnich we have both LFC and MFC and these four 
frequencies will be denoted fjk. Finally, the n observations with»21
only SFC give freguencies fk, where f„ + f, = n, — n^. Most of the 
following results appear in Erdem (1984).

If one views the simple random sampling method as being applied.
to a finite population of N points of which PN are found to be ones 
when measured by the true measurement method, then the frequen-

cies f,.. 2 
j=o

1

k=o
and fp. •3 -Ç. are seen to be

1
^ojk n

distributed in accord with the hypergeometric distribution. In most 
of the applications this hypergeometric distribution will be indistin- 
guishable from the binomial distribution with sample sizen n, and 
parameter P. We will thus suppose that ali of the frequencies fjjk are 
multinominally distributed. This also requires one to verify that the 
methods of making the fallible classifications do not induce too many 
dependencies in measurement errors that could upset these assumptions.

The underiying probabilities can be denoted as Pijk for the fjjk' 
as Pjk for the fjk and as P^ and P, 1-P^ for the l’k. Whith apologies
for adding to our notation, a more convenient parameterization is in 
terms of the following 0’s plus 1’, :

0,
0 3

0 5

P / P 00001 00 '-^2’ P / P010/ 10

— PflOI I Pol’

= Poo/Po,

Pon/Pu

0. = Poı/Pp (4.1)

In this way ©,, 0^, ©j and 0, can be estimated directly from the
fljk. the next two, 0, and 0,, from the f-v, while P, can be estimated o" 3“-' 1
from fp In fact the likelihood function can be found to factor and this 
makes these estimates maximum likelihood (ML) estimators. There 
is a similarity in approach here to the above multivariate normal case.

The parameter of interest, P, can now be expressed in terms of 
the 0’s and P. as1

P = (1-PJ 0, (1-0,) + (1-P,) (1-02) (i-0.s) + P, (i-©,) 0,

+ P, (1-0,) (1-6,). (4.2)
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By substituting the ML estimates of the 0’s and of Pj into this cxp- 
ression one obtains the ML estimate of P, under the proviso of f.jk > 
0 for aU j and k, as:

P 'jP
1 
2
J-o

S 
k=o

fjk + fjk 

f..k + f.k

fljk

f. (4.3)

If any of the f.jk should be zero then we suggest that the contribution 
from that combination of j and k to the sum be set to zero.

When one visulizes the data being produced by the initial random
selection and subsequent independent stochastic classifications,
further reparametirization seems logical. The new parameters along
tvith P are a 0’ «ı. Pg and Pj where:

«0 = Pr (LFC Misclassifies j i 0)

1 ^••k + f'k fk

“1

a

«j = Pr (LFC Misclassifies / i = 1)

Pr (MFC Misclassifies / i

Pr (MFC Misclassifies / i

0)

1). (4.4)

The links back to the underlying probabilities are:

^0

P
000

p010

p 001
p011

= Q (1-«J (1-/1J

= Q «1 (1 - Pı)

== Q (i-«J

=

P 

Pı 
P

100

110

101

Pın

= P «0^0

= P (1 «o) 3o

= P%(l-#o)

= P(l-a„)(l-^g) (4.5)

There are only five parameters in this version as compared to the seven
we used earlier and one should probably exanıine the data in deciding
on the appropriateness of this formulation.

In actual applications one would study the measurement ope-
ration under better controlled conditions than during the survey itself. 
Thus we may well suppose this separate investigation has fumished
estimates of a,,,
of P^p

Kj. and Our interest is in calculating the variance
as a function of these, presumed known, misclassification pa-

rameters.

By returning to the joint multinomial distribution of the frequ-
encies, finding their covariances and then applying
expansion to the expression for P^p

a Taylor series
one sees that:

Var (P^p) Vı/Hı + AJ + A31 n.•3 (4.6a)“2
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PQ (KJn, + Kjn, + K3/n3) (4.6b)

where

Aj = P, (1 - PJ [0, (1 - ©3) + (1 - 0J (1 - 0J - ©3 (1 - ©,)

-(1-05) (1

A, = ©, (1 - ©,) P3 (0, - ©3)^ + ©3 (1 - ©5) (1 - P.) (0. ©1)^, and

A3 = ©3 (1 - ©>) ©3 (1 - P,) + ©3 (1 - ©J (1 - ©5) (1 - Pl) + ©3

(1 - ©3) 0,P3 + 0, (1 - 0J (1 - ©J P„

while

K3= PQ (1_ ^„-

K, = PQ(l-a„ -»^1.
(1-0 ,20(1-0

(1 - P,) Pjo P„„ II

K3 «o (1 - «1) 
Poo

(1 - «0) 
Pıo

«o (1 - «1) 
Pıo

(1 - a, 
fU

•0)

The variance expression for binary data thus breaks conveniently
into the same three parts as the earlier one (2.4) for numerical data did.

This offers the same possibilities for gauging the relative effort
one should put on each of the phases whenever one has some notion
of the relative cost of the three classifiers. In sor far as the costs follow
the same simple funetion as
of (3.2) will hold. Notice that usefulness of a

(3.1) the optimum sample size formulas
measurement method

is effectively summarizaed by the ratio Kı/Cı, where Cı is the cost, 
in time or other resources, per measurement for the more fallible clas­
sifier when i = 1, less fallible classifier when i = 2 and for the third 
phase or true classifier when i = 3.

numerical illustration

Lacking more realistle data, let’s use some generated in the course
of a Monte Carlo simulation to investigate the properties of P^p (4.3) 
and of an estimator of its variance based on (4.6a). The preliminary

= PAİ-P,) [•
+

+

- + p p p1-^ 01 -*■:
, and

■] + A (1 - P.) X
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sample was of size ıij = 500, with n, 
were found to be:

= 50 and Uj = 25. The data

fiil 

fon 
fil 

fo

= 0 f̂010
- 2, £’ = 0 f 101 ^1

= 1 f'•001 ■

0100

= 3, f,„ = 2, f„, = 4, f„„ = 16, 
= 313, and fj = 137.

The first step is to estimate ©j through ©^ as:

f / f■‘ooo / I

f / f■‘ooi / 'I

’OO’

’OP
05 = (f-00 + foo)/ (f"o + f-o)’ and

00 = (f.„ + foû/(f.., + f.J, with
= (f.., + f.,+ {,)l {{...+ İ..+ {.).

These estimates, given here to just two decimals, are: 1.00, .33, 
1.00, .00, .85, and .41. Entering them into expression (4.2) produces

= .251075. Next by substituting them into (4.6a) we find V (Pjp)
= .003316. The conciusion is that there is a population proportion 
of .25 ± .06.

If there had been separate knowledge of «j. a,■0’
eould he incorporated into V (Pjp). Such information could stabilize
the variance estimate. However5 Vfe believe it could be a littie risky
using it in estimating p because it would create bias if it was mistaken
knowledge. When (Zj = a. = .1 and /îj as somewhat
reasonable values, are used in expression (4. 6b) then V (Pjp) 
.003610.

= 7 f
— 3 f
■ '^1 000 = 12,

0
0

1

3

= P 1

04 f / f 
^011 / ■^•11

/î/j and jSj, this

/3o — -25

SUMMARY

The basic expressions for any sampling method are the estimator.
its bias and variance, a variance estimator and optimum sampling
rates. For three—phase sampling and for numerical data these expres- 
sions are (2.3d), (2.6), (2.7) and (3.2) respectively. Actually formula 
(2.5), the estimated variance, is only a numerical example but the text
telis how to use sample variances and correlations to obtain this va- 
riance estimate. For binary data the basic formulas are (4.3 and (4.6a). 
Either formula (4.6a) or (4.6b) can be used for variance estimation 
as iUustrated in the example just above. The optimization formula 
is again (3.2) for binary data with the K’s in place of V’s.



Table. Percent of Land irrigated for Sampled Areas as Measures from Landsat (Phase I), from 
Aircraft (Phase II) and from Ground (Phase III) in Nine Counties of California

County 1 I, Wj 11, X, ın, Yj

County 2

91
84
90
97

100
88
72
68

100
65
90
81
81
95
94

100
85
92
66
73
67
85
93
96
95

91
83
92
98

100
100

71
70

100
70

100
79
96
94

100
99
88
88
99
78
54
66
76
95
94

94
83
93

County 3

48
90
51
79
78
35
76

69
92
51
67
90
43
76

56

County 4

County 5

County 6

91
68
77
82
44
86
87
68
63

81
82
81
67
62
10
82

27
6

51
34

2
45
75
37
58

87
89
75
73
41
79
86
79
76

88
77
79
73
64

8
83

30
5

51
50

6
42
77
36
50

88
86

86
82

27
5

54
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