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ABSTRACT

Athwart immersions into hyperbolic space have been defined. A fundamental theorem
relating athwart immersions in Euclidean space to athwart immersions in hyperbolic space has

been establised. Some concluding results concerning athwart immersions into hyperbolic space
have been proved.

INTRODUCTION

In this work we are concerned with a problem, namely, the athwart
immersions into the (n-1)-dimensional hyperbolic space H. In [3],
the same problem has been discussed in Euclidean space Rn+1, Athwart
immersions into Euclidean space may be defined as follows [3]:

Let M and N be C® closed, connected n-manifolds and let £ and g
be smooth immersions of M and N, respectively into Euclidean space
Rn+l. We say that f is athwart to g - written f f g - if and only if f(M)
and g(N) have no tangent hyperplane in common.

In what circumstances is f f+ g? was the main question which has

been answered in [3]. Actually, in [3 ] the following theorems have been
proved:

Theorem (i): Let f: M —~ Rnt+! and g: N — Rn+1 be immersions. If
f(M) has two tangent n-planes such that one meets g(N) and the other
does not, then f is not athwart to g.

Theorem (ii): Let f: M —~ R+l and g: N -~ R0+l be immersions
such that f(M) n g(N) = 2. Then f is not athwart to g.
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Theorem (iii): Let f and g be two immersions of the unit circle S'
in R2, If f A g, then the image of one of the immersions is inside all the
loops of the other.

Theorem (iv): Let f: M — Ru+1 and g: N — Ro*1 be immersions
such that f f+ g. Then one of the manifolds, say M, is diffeomorphic to
the n-dimensional unit sphere S°, f is an imbedding with starshaped
inside and g(N) is contained in the interior of the kernel of the inside of f.

The main purpose of this work is to define the athwart immersion
and to prove similar theorems to the above ones in the (n-+1)-hyperbo-
lic space H.

The fundamental theorem we are going to prove may be stated as
follows:

Theorem (1): Let f: M — H and g: N -~ H be immersions into the
(n-+1)-hyperbolic space H. Then f # g if and only if Bof A Bog. (The
map B: H —~ Ro*1 - as defined below - is the central projection).

1. DEFINITIONS AND BACKGROUNDS

Aiming to our study we give some important definitions and some
notes. When dealing with (n+1) - hyperbolic space H one might use
totally geodesic k-submanifolds to do the same business of k-planes
in Euclidean space Rutl,

A loop is a C* map f: [a, b] - H
such that f | [a, b) is injective, f'(t) #Z O fort € [a, b], and f(a) = f(b).
Consequently, a loop in a 2-dimensional hyperbolic space is a Jordan
curve and therefore the complement of its image in H consists of two
disjoint open connected subsets of H according to the Jordan curve the-
orem [2]. One of these two subsets is bounded and will be called the in-

side of the loop f, or the inside of f, while the other is unbounded and is
called the outside.

Definition (1.1):

(i) Asubset AcH is said tobe starshaped set with respect to the
point x in A if for every point y in A the geodesic segment joi-
ning x to y is contained inside A.
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(i) A subset A = H is starshaped set if it is starshaped with res-
pect to all of its points.

According to this definition, a subset A < H is starshaped if and
only if it is convex.

Definition (1.2): The kernel set B = A of a subset A < H is the
set of all points x in A such that the geodesic segment from x to any
point y in A liesin A.

One might see that the above two definitions (i) and (ii) are in con-
sistence with the corresponding ones in Euclidean space.

Definition (1.3): Let M and N be C® closed, connected n-mani-
folds and let f : M —~ H and g : N — H be smooth immersions of M and N,
respectively, in the (n+1)-hyperbolic space H. The immersion f is called
athwart to g-written f f+ g-if and only if f(M) and g(N) have no tangent
totally geodesic hypersurface in common.

From this definition, we can see easily that two concentric geodesic
spheres in H are athwart while two intersecting geodesic spheres in H
are not.

Now, we define and discuss briefly the main properties of the cent-
ral projection (Beltrami map) § : H — R2*1 as it represents an important
tool for proving the fundamental theorem (1). The most convenient mo-
del for H is the spherical one which might be defined as follows:

H = {x©@, x(O,..... , x+D) e Vo2 s —(x(0)2
(xz + ... + (x@+D)2 = 1}
where V2+2 denotes the Minkowski space (R"+?, <, >) with the metric
< > = —dxo ® dxo + nill dxi ® dxi,
i

The Beltrami map § : H —~ Ro+1 is defined to be the map which
takes x € H to the intersection of the Euclidean space R2*! defined by
x(© =1 with the straight line through x and the origin 0 of V+1 as
indicated in the following figure.

In this case B(H) is the open (n--1)-ball D(p, 1) of radius 1 in the above
Ru+1 centered at the point p = (1,0,0, ....., 0).
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Fig. 1

Take (x©), x(, ..., x(®1) ¢ H, the map @ can be expressed ma-
thematically as follows [1]:

X
— x| . _
B(x) = X[< X, €0 > = = ©
x (1) x(n+1) )
IR . ~© S
where e, = (1,0,0, ..... , 0).

Definition (1.4): A homeomorphism ¥ : M — M from the manifold
M into the manifold M is called a geodesic mapping if for every geodesic
v of M the composition ¥ o v is a reparametrization of a geodesic of M.

Note that in accordance with the above definition a geodesic map-
ping ¥ : M — ¥ takes (totally) geodesic k-submanifolds of M to (totally)
geodesic k-submanifolds of M.
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It is easy to show that:

Lemma (1.1): The central projection § : H — D(p, 1) = Ro+1is a
diffeomorphism.

Lemma (1.2): The central projection § takes hypersurfaces of H
with sectional curvatures K > —1 into hypersurfaces of Ro+1 with sec-
tional curvatures K > 0.

(For the proof of this lemma see [1 ).

Lemma (1.3): The central projection map B takes starshaped sub-
sets of H to starshaped subsets of Rn+1,

Proof: Take A = H to be a starshaped subset and assume in cont-
rary to the lemma that §(A) = B<R™! is not a starshaped subset.
Then there exists two points y, y, € B such that the straight line seg-
ment v joining y; and y, does not lie in B. It is easy to see that there
exist two points x, X, € A such that B(x;) =y, B(x,) = ¥2. It is clear
that the geodesic segment v joining x; and x, lies-by hypothesis-in A
and consequently 8(y) = v, is a straight line segment from y1 to y, which
is included in B. This argument shows that there are two straight line
segments y; and y, in R2*1 joining y; and y, which is a contradiction.
Thus, if A is a starshaped set, then B(A) is a starshaped as well. In a simi-

lar way of discussions we can show that:

Lemma (1.4): The central projection map B takes the kernel set
of a subset A < H to the kernel set of the subset 8(A) = B(H).

Now, after this discussion we proceed to prove the fundamental
theorem (1).

(i) The necessity part:

Letf: M — H and g : N — H be athwart immersions. Assume in cont-
rary that Bof : M — R2*! and Bo g : N — RP*! are not athwart. Then,
there exists a hyperplane T in R2+1 which is tangent to both Bof(M) and
Bog(N) at the points - say - p and g, respectively. Using B! and taking
into account that 3~ has the same properties as B (Lemma (1.1) — (1.4)),
we see that, there exists a totally geodesic hypersurface B-YT) which
is tangent to both f(M) and g(N) at the points B-1(P) and 8-Y(q), respec-
tively. This would mean that f(M) and g(N) are not athwart which is a
contradiction. Hence Bof(M) A Bo g(N).
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(ii) The sufficiency part:

In a similar way of discussicn we can show that athwartness of

Bof(M) and Bog(N) in Ret1 implies athwartness of f(M) and g(N) in H.

2. SOME RESULTS

Theorem (2.1): Let f : M — H and g : N — H be immersions. If f(M)
has two totally geodesic hypersurfaces such that one meets g(IN) and the
other does not then f is not athwart to g.

Proof: Under the above hypothesis and using the properties of the
central projection map B, it is easy to see that Bof(M) has two tangent
n-planes such that one meets Bo g(IN) and the other does not. According
to theorem (i), Bof is not athwart to Bog and hence f is not athwart to
g by the fundamental theorem (1).

Theorem (2.2): Let f : M — H and g : N -~ H be immersions such
that f{(M) n g (N) % @. Then f is not athwart to g.

Proof: It is easy to show that by lemma (1.1) if f(M) n g(N) # 2,
then Bof(M) n Bog(N) # . Hence, by theorem (ii), Bof is not athwart
to Bog and consequently, by the fundamental theorem (1), f is not ath-
wart to g.

3. SPECIAL CASES

Now we shall discuss the case when n = 1 as being represented in
the following theorems.

Theorem (3.1): Let f and g be two immersions of S' into the 2-
dimensional hyperbolic space H. If f fr g then the image of one of the
immersions is inside all the loops of the other.

Proof: Since f # g, then by using the fundamental theorem 1)
we see that Bof f Bog. According to theorem (iii) it is clear that the ima-
ge of one of the immersions, say Bof(M), is inside all the loops of Bog(N).
Using B~1 we obtain the result.

Remark: The converse of this theorem is not necessarily true even
in Euclidean space R2, i.e. if the image of one of the immersions of S
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is inside all the loops of the other, then f is not necessarily athwart to g.
The following example indicates this situation.

y“

g(N)

Y

Fig. 2

Theorem (3.2): Let f : [a, b] — H be a loop in the 2-dimensional
hyperbolic space H and p an outside point. Then there exists at least one
geodesic tangent to the loop passing through p.

Proof: Using the properties of the central projection map B, there
exists a loop Bof :[a,b] — D (p, 1) = R2 for which 8{p) is an outside point.
Then, there exists at least one tangent line to the loop fof passing th-
rough the point 8(p) [3]. Hence, by lemma (1.2), we get at least one
geodesic tangent to the loop f passing through p.

4. HYPERSURFACES

In case of immersions with codimension 1, we have

Theorem (4.1): Let f : M —~ H and g : N -~ H be immersions such
that f #+ g. Then one of the manifolds, say M, is diffecmorphic to Sn,
f is an imbedding with starshaped inside and g(N) is contained in the
interior of the kernel of the inside of f.
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Proof: As above, it is obvious that Bof f Bog (by fundamental
theorem (1)) and consequently, by theorem (iv), one of the manifolds
say Bof(M) is diffeomorphic to S® Bof is an imbedding with starshaped
inside and Bog(N) is contained in the interior of the kernel of the inside
of Bog. Taking into account that the map § is a diffeomorphism and
using lemma (1.3) and (1.4) the proof is complete.
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