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ABSTRACT

A random variable X is said to be self-decomposable (benceforth, SD) if it satisfies tbe fol- 
lowing eguivalence relation in distribution

X = (a*X') o (Xa)

for alı positive a in some öpen interval. The operation * is either multiplication or addition and 
tbe distribution of the co-random variable Xa depends on tbe constant In this paper we study
SD random variables where the operation o defined to be maximunî. Some properties of such
random variables are given and a representation theorem is stated for discrete and continuous 
random variables for the univariate case.

Keywords and phrases: self - decomposable, max-stable distributions, extreme vaiues,

INTRODUCTION AND SUMMARY

The study of functions of sequences of independently distributed
random variables has long been a preoccupation of probabilists. For
sums of random variables these studies bave led to, among other results, 
the Central limit theorem, the characterization of the stable and infini- 
tely-divisible laws, and later the characterization of the self-decompos- 
able laws (see for example Gnedenko and Kolmogorov (1954), Loeve 
(1963), Lukacs (1970), and Laha and Rohatgi (1979)). A probability dist­
ribution is said to be sum-self-decomposable (henceforth, SSD), or of 
class L, if its characteristic function satisfies

(p(t) = !j>(at)(Po,(t)

for ali a e (0,1), with (pa(') being a characteristic function. For the 
responding random variables this means that

X£aX' -h Xa

cor-

(1)
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for ali a î (0,1), where X' and Xq, are independent and X' is distributed 
as X.

The class of SSD distributions are the limit latvs for the sum of
independent but not identically distributed (INID) random variables. 
Clearly, apart from X = 0, no lattice random variable can satisfy equ- 
ation (1); in fact, ali nondegenerate SSD distributions are known to be 
absolutely continuous. A discrete analogue of SSD distributions is defined 
by Steutel and Van Harn (1979) as follows: A discrete distribution with 
probability generating function P is called discrete SSD if

P(^) P(1 a + az,) Pa(z)

for a s (0,1), with Pa(-) being a probability generating function. It turns 
out that discrete SSD distributions have properties that are quite simi- 
1ar to those of their continuous counterparts.

The problems invoh, ed in the theory of the limit distributions for 
the maximum of random variables are parallel to those encountered in 
the theory of limit laws for the sums of random variables. Gnedenko 
(194.3) characterized the maximum stahle (henceforth, MS) laws. He 
showed that the limit distributions for F’>(anX -H bn), where 3^ 0
and bn are suitably chosen real constants, are confined to the distributions 
of the three forms:

A(x) =

3>a(x)

{exp(-e 

exp(-x~’“),

-co ■

if X

(2)

’'pa(x)

' 0

( exp(-(-x)“),

if X

if X

if X

0

0

o

0 0

It has been shown by Mejzler (196.S) that the analogue of the class 
of sum infinitely divisible distributions is the class of ali probability 
distributions for the operation maximum. So that masimum infinitely 
ditisible distributions is not particularly interesting. Thus, we are led 
here to a study of the class of maximum self-decomposable (MSD) 
distributions, the analogue of Class L.

Let
Y(F) = inf{x : F(x) 0}

be the lower end point of the distribution function F and let
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İ^(F) sup {x : F('x) 1}

be the upper end point of the distribution function F. Throughout the 
paper we will only consider the cases

• t(F) =
• t(F) =

■ t(F) =

— <x, O(F) = 0;

O, O (F) = A oo;

<», n(F) j- 00.

With obvious niodifications some of the results can be extended to other 
values of y( •) and Q(.).

In the next section the definition of MSD distributions and some 
examples will be given. The MSD distributions can be characterized in 
several different ways, one of the such characterization will be introdu- 
ced in Section 3. By the analogy to Class L, we can discover the limits 
in distribution of the maximunı of INID random variables which cor- 
responds to the class of MSD distributions. Such a characterization of 
MSD distributions will not be discussed in this study. For this charac­
terization see Eddy and Sungur (1986). Some properties of MSD distri­
butions will be discussed in Section 4, and unimodality of MSD distri­
butions will be considered in Section 5.

DEFINITION AND SOME ENAMPLES

DEFINITION I. A distribution functioı; (df) F on the real line is said 
to be positive scale MSD if it satisfie.s the following functional eguation

F(x) F (3x). Gg(x), 1

if Y (F) = O with Ggf.), called the co-distribution function (co-df) of F, 
being a df.

DEFINITION 2. A df F on the real line is said to be negative scale 
MSD if it satisfies the following functional equation

F(x) F(Şx).Gg(x), VP, O Ş < 1
if £1(F) = O witlı Gg(.) being a df.

DEFINITION 3. A df F on the real line is said to be location MSD 
if it satisfies the following functional eguation

F(x) F(x + y}. Hv(x), Vy, Y > O 

with being a df.
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For the corresponding random A'ariables location MSD means that

X 0 max {X' — y, Xy}
where X' and Xy are independent, and X and X' are identically distri­
buted.

If the functional eguation specified for location MSD holds only 
for some fixed y, then the random variable an,d its df is called location
y—MSD. Similarly, we define positive (negative) sc&le ^-MSD distribu-
tions. On the other hand, if a df satisfies the specified relation for a 
subset of values of y or then it is called “incomplete location MSD”,
or incomplete positive (negative) scale MSD”.

EXAMPLES: (a) Every degenerate random variable is location 

MSD.
(b) The uDİform distribution on [0,1] is location

MSD.
(c) Not every random variable is MSD. For ex-

ample, the random variable defined by P(X == 0) 
is net.

P(X 1) 1/2

(d) Extreme-value distributions given in Equatiou
(2) are MSD.

In order to be able to assert that a random variable and its df is 
location MSD, we need to shovv that the function defined by

Hv(x) F(x) 
F(x + y)

is a df for ali y > 

(a) Obvious.

0. Hence,

(b) For V

H^(x) = F(x) = I[o,i](x). (i)

For 0 < Y < 1,

H^(x) = 0 if X < 0

1

X + Y
if 0 1 - Y

(4)
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X

1

if 1

if X

- T '

> 1.

X 1

It is clear that both of the functions given in Equations (3) and (4) are 
df’s. Therefore, uniform distribution on the interval [0,1] is location

MSD.

(c) Not e that for y = 1 / 2

Hv2(1/4) = F (1/4)
F (1 / 4 + 1 / 2)

1

but

Hv2(3/4) = F (3/4) 
F(3/4 + 112) = 1/2

which shows that 
is not a df.

Hy(x) İs not a nondecreasing function,, therefore it

To show that extreme-value distributions are MSD, we wiU follow
a different approach. We will define
ali Y

a function Hy(x) which is a df for
0, and by solving the resulting functional eguaticn we will sho'w

that F(x) should have the form of extreme-value distributions. Here we 
wiU show that cxtreme-value distribution A(x) is location MSD. Similar 
approach can be used to show that <l>a(x) is positive scale MSD, and 
tp«(x) is negative scale MSD.

(d) Let F be a location MSD with the co-df

Hy = FK(y)

■where K : y [^,1] is a
of location MSD distributions

continuous function. By using the definition

F1-K(y)(x) = F(x + y)

Equation (5) can be written as

[1 - K(Y)l.h(x) = h(x + y)

(5)

(6)
where

h(x) = logF(x).

The solution of the functional equation (6) wiU give us the form of this 
special class of MSD df’s.

Y
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LEMMA 1. If h(.) is a nonpositive real-valued function and K: 
Y -> [0,1] is continuous, then the only solution of the functional equa- 
ation [6] is

h(x) == — 

and

K(y) = 1 - eCY 

where a and c are arbitrary constants.

PROOF: Introduce the functions

h*(x) = log(-h(x))

and

K*İy) lcg(l-K(Y)].

Then we h ave

K*(y) + h*(x).h*(X + y} (7)

Equation (7) has the form of Pexider’s equation vvhich has drawn 
much attention in mathematical literatüre and arises in different con- 
text8 (see Aczel (1966)). its general solution is stated in Aczel (1966) only 
for positive or nonnegative x and y- Since Equation (7) m us t hold for
ali -oo < 
cation.

+ Ki, and YX O, its solution requires further justifi-

First, by repeated use of Eguation (7),

h*(x + a -H y) = K*(«) + K*(y) + h*(x).

On the other hand, by substitution of a + y in Equation (7), we find 

h*(x + « + y) = K*(o'. + y) + h*(x).

From the last two equations we obtain

K*(oc + y) K*(«) + K*(y), V y 0

whicb is known as Cauchy’s functional equation, and its general solution 
is

K*(y) = c-y-

So, the functional equation that we must solve becomes

h*(x -j- y) = c.Y + h*(x), V —co 0.X
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We will sob e the ahove functional equation by treating for nonnegative 
and negative x seperately. Firts, let x to be nonnegative If we set x = 0, 
the equation becomes

h*(Y) = c-y + h*(0)

whiclı imlies that

h*(x) = c-x 4- a for 0.X

Now, let X 0. If we set y = —x, then

h*(0) = c-{-x) + h*(x)

i.e.,

h*(x) = c-x + a for X (8)

Note that Equation (8) also holds for x 0, since h*(0) a.

; 0.

Therefore, the general solution of Equation (7) is

h*(x) = c •X -4 a 

and

K*(y) == c-y 

where, a and c are arhitrary constants.

So, we have

h(x) = —e'.cx+a

and

K(y) 1 — ecv

as the general solution of the functional Equation (6). QED

Now, if we impose the condition that h(-h oo)
— 00 (whicb makes the r(x)

using the Lemma 2.1 we find that
eh(x) be a df), we find that c

0, and h(- oo)
0. By

F(x)

■where, e

exp(-eC’^+a)

0, and a are arhitrary constants. Note that, the extreme- 
value distribution A(x) has the above specified form for e = -1, and 
a = 0.
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A characterization of MSD DİSTRİBUTİONS

The Laws of class L have been determined by solving a functional 
equation for the characteristic function of the distribution. Similarly, 
MSD distributions can be characterized by solving the functional 
equation for the distribution function of the distribution.

THEOREM 1. (i) A df F(x) is positive scale MSD if and only if

Ffx) 

when y(F)

(ii)

F(x) 

when y(F)

(İÜ)

F(x) 

vvhen y(F)

exp {g(logx) 

O and fl(F) _ı_ 00.

A df F(x) is negative scale MSD if and only if 

= <'XP !g( logf \i4

-00

A df F(x) is location MSD if and only if

exp {g(x)

co and Û(F) = -(-oo.

}

and fI(F) = O,

1

In each case, g(.) is a nonpositive, nondecreasing, right continuous
and concave function satisfying g(û) O and g' (y) = -(- oo.

The proof of these results is given in Eddy and Sungur (1986), and 
Sungur (1985).

Suppose that F(.) is location MSD , i.e.,

Fix) = F(x-j-Y).Hv(x), V',1 ==0 O (9)

tvhich imlies that

F(x -i- y) 4- 2y).Hy(x 4- y)
by using the above relation iteratively and substituting back in 
Equation (9), we end up with

r(x) = F(x 4- ny) ■ 11 Hy(x 4“ (i —■ I)-,-) V n and y > 0.
1=1

Taking the limits as n increases, we get

F(x) = n H^(x + (i - i)y). 
1=1
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Similarly, one can show that

F(x)
oo
n Gg(pi“ix)

1 = 1

for positive and negative scale MSD distributions, for appropriately 
defined [3. These results plays very important role on the characteriza­
tion of MSD distributions as the limit laws of mavimum of INID ran­
dom variables.

SOME properties OF MSD DISTRIRUTIONS

If X is location MSD, then a location and scale transferin of X,
i.e., aX + b, for a o, is also location MSD. For the positive and ne-
gative scale MSD random variables, it can be 8hown that Y = cX. for
c 0, is also scale MSD. On the other hand, if X is scale MSD, then
the transformed random variable Y = X — b, b 0, will not be a
scale MSD, but its df will satisfy the following relation:

F(y) F(^y + h(Ş - l)).Gg,b(y).

In terms of the corresponding random variable this means that

Y g max(Ş“i(Y - bO - 1», Yg,b).

If we consider other transformations of MSD random variables, the 
following property of log-concave functions, which is proven by Klin- 
ger and Mangasarian (1968) will be helpful.

LEMMA 2. Let 0 (x) be a nondecreasing log-concave function
and let t(x) be a concave function. Then the function which is defined 
as

= 0 (f(x)) 

is log-concave.

yve
By using Lemma 2, and the representation of location MSD df’s, 

can prove the following result on the transformations of location
MSD random variables.

THEOREM 2. Let X be a location MSD random variable, and let 
Y = (p(X), where is inereasing and i® concave on the range 
of X. Then, Y is location MSD.
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PROOF: Since ı^(.) is increasing on the range of X

Fv(y) Fx(r'(y))-

Therefore, the result follcws from the Lemma 4.1.
As an example, consider the transformed random variable Y = 
by Theorem 2, if X is location MSD, then Y is also location MSD.

eX.

UNIMODALITY OF MSD DİSTRİBUTİONS

In matheınatical statistics a df, F(.), is called unimodal if its deri-
vative, F'(X), exists everywlıere and has a unique (finite) masimum.
We use the following more restrictive definition of unimodality of df’s
which is given by Gnedenko and Kolmogorov (1954).

definition 4. The df F(.) is called unimodal if there exists at
least an Xo such that F(x) is convex for x Xo and concave for x Xo.

It is easy to verify that the Normal, the Cauchy, and the uniform
distribution on a finite interval are ali unimodal in the sense of Defini- 
tion 5.1. Also, A(x), -^Kich is defined in Equation (2), is unimodal and 
has mode at x = 0. Since, A(x) is a special case of location MSD df’s, 
it suggests that location MSD df’s might be unimodal. In this section, 
we will show that in fact this proposition is true for location MSD df’s. 
Before we prove the result, we need the followiug theorem which is pro-
ven by Gnedenko and Kolmogorov (1954, pg. 157).

THEOREM 3. (i) If the df F(.) is unimodal with vertex at x 
then there exists a df V (x) such that

= 0,

F(x) xF'+(x) = V(x) and.

lİlUz .j. X l'F(z) - X F'„ (z)] - limz.,xV(z)

for every x (a product 0. oo is taken to be 0), where F' ,, and FG are the 
right and left derivatives of F respectively.

(ii) Let the df F(x) be continuous except possibly at x 0. Sup-
pose that there is a denumerable set D of points x and a df V(x) such 
that if X is not in D, the right or left derivative of F(x) (possibly different 
ones at different points) exists and satisfies the equation

F(x) — xF'(x) = V(x);

Then F(x) is unimodal.
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On the other hand, if F(x) is continuous and differentiable, then the
Theorem takes the following form.

THEOREM 4. In order that a df F(x) be unimodal (at vertex x 
it is necessary and sufficient that the function

0).

V(x) F(x) - xF'(x)

be a df.

LEMMA 3. IfF(x) e*dx) ig location MSD, then h'( 4 co) = 0.

PROOF: If F(.) is location MSD tîıcn

l'(x) -|- y)Hy(x), yy > 0,

where, Hy(.) is a df. It follovvs that Hy( 4 oo) 1 if and only if

lim.;ix^Y-®(h(x) h(x y)) 0.

Consequently, 

limx_>+ooy“i(h(x) 

which implies that

h(x .+ y)) Vy o.

V y > 0

= 0,

linix„,+Jiniy^oT ’ lı(x + y)) ==: 0

Avhich proves the Lemma.

Now, we are ready to prove the following result on the unimodality 
of MSD df’s.

THEOREM 5. If F(x) = 
such that xh(x) -> 0, as x 
with vertex at x = 0.

is a nondegenerate location MSD df
-A 00, and X <> tX), then it is unimodal

PROOF: To prove the theorem, we ha'/e to oerify that

V(x) F(x)

= eh(x) — xh'(x)e'ıP) 

is a df, where h(.) is a nonpositive, nondecreasing, right continuous 
concave function satisfying h'(-co) = 4- oo, and h(+ oo) = 0.

First, note that, since H(x) is concave, h'(x) is decreasing (so, -h'(x) 
will be increasing). )Therefore

V(x) [1 xh'(x)
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(1 + x(-h'(x))

is a nondecreasing function of X.

X
Therefore, by the assumption that xh(x) 0, as x ->• + t» and 
- 00, the result follows from the Theorem 4.

By using the properties of guasiconcave functions strong unimo- 
dality MSD of df’s can be studied.
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