ON THE GAUSSIAN AND MEAN CURVATURES OF PARALLEL HYPERSURFACES

M. KEMAL SAĞEL and H. H. HACISALIHOĞLU

Department of Mathematics, Ankara University, Ankara, Turkey

ABSTRACT

In this study, we give a generalization of the higher order Gaussian curvature function and the mean curvature function about the parallel surfaces in $\mathbf{E}^{\mathbf{3}}$, for $\mathbf{E}^{\mathbf{n}+1}$.

BASIC CONCEPTS

DEFINITION 1: Let M_{1} and M_{2} are two hypersurfaces in E^{n+1}, with unit normal vector N_{1} of M_{1}

$$
N_{1}=\sum_{i=1}^{n_{+1}} a_{i} \frac{\partial}{\partial x_{i}} .
$$

Where each a_{i} is a C^{∞} function on M_{1}. If there is a function f, from M_{1} to M_{2} such that

$$
\begin{aligned}
& \mathbf{f}: \mathbf{M}_{1} \longrightarrow \mathbf{M}_{2} \\
& \mathbf{P} \longrightarrow \mathbf{f}(P)=\left(\mathbf{p}_{1}+\mathbf{r a}_{1}(P), \ldots, \mathbf{p}_{\mathbf{n}_{+1}}+\mathbf{r a}_{\mathbf{n}_{+1}}(\mathbf{P})\right) .
\end{aligned}
$$

Then M_{2} is called a parallel hypersurfaces of M_{1}, where $r \in R[1]$.
DEFINITION 2: Let M be a hypersurface in $\mathrm{E}^{\mathrm{n}+1}$ and S denotes the shape operator on M, at $P \in M$. The function H defined by
$\mathbf{H}: \mathbf{M} \longrightarrow \mathbf{R}$
$P \longrightarrow \mathrm{H}(\mathrm{P})=\mathrm{Iz}_{\mathrm{z}} \mathrm{S}(\mathrm{P})$
is called the mean curvature function of M and the real number $H(P)$ is called mean curvature of M at the point P [3].

DEFINITION 3: Let M be a hypersurface in E^{n+1} and S denotes the shape operator on M, at $P \in M$. The function K defined by

$$
\begin{aligned}
K: M & \longrightarrow \\
P & \longrightarrow K(P)=\operatorname{det} S(P)
\end{aligned}
$$

is called the Gaussian curvature function of M and the $K(P)$ is called Gaussian curvature of M at the point P [3].

DEFINITION 4: Let M be a hypersurface in En+1 and $T_{M}(P)$ be a tangent space on M, at $P \in M$. If S_{P} denotes the shape operator on M, at $\mathbf{P} \in \mathbf{M}$, then

$$
\mathrm{S}_{\mathrm{P}}: \mathrm{T}_{\mathrm{M}}(\mathrm{P}) \longrightarrow \mathrm{T}_{\mathrm{M}}(\mathrm{P})
$$

is a linear mapping. If we denote the characteristic values by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and the corresponding characteristic vectors by $x_{1}, x_{2}, \ldots, x_{n}$ of S_{P} then $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the principal curvatures and $x_{1}, x_{2}, \ldots, x_{n}$ are the principal directions of M, at $P \in M$. On the other hand, if we use the notations

$$
\begin{aligned}
K_{1}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) & =\sum_{i=1}^{n} \lambda_{i} \\
K_{2}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) & =\sum_{i<j}^{n} \lambda_{i} \lambda_{j} \\
K_{3}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)= & \sum_{i<j<t}^{n} \lambda_{i} \lambda_{i j} \lambda_{t} \\
& \cdot \\
& \cdot \\
K_{n}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) & =\prod_{i=1}^{n} \lambda_{i}
\end{aligned}
$$

then the characteristic polinomial of $S(P)$ becomes

and $K_{i}, 1 \leq i \leq n$ are uniquely determined, where the functions K_{i} are called the higher ordered Gaussian curvatures of the hypersurface M [4], [5].
THEOREM 1: Let f be a mapping from \mathbf{M} to \mathbf{M}_{r} and M_{r} be a parallel hypersurface of M. Then f preserves the principal curvature directions [2] THEOREM 2: Let \mathbf{M}_{r} be a parallel surface of the surface $\mathbf{M} \subset \mathrm{E}^{3}$. Let the Gaussian curvature and mean curvature of M be denoted by K and H at $P \in M$, respectively and the Gaussian curvature and mean curvature of M_{r} be denoted by K_{r} and H_{r} at $f(P) \in M_{r}$, respectively. Then we know that

$$
\mathbf{K}_{\mathbf{r}}=\frac{\mathbf{K}}{1+\mathbf{r} \mathbf{H}+\mathbf{r}^{2} \mathbf{K}}
$$

and

$$
\mathbf{H}_{\mathrm{r}}=\frac{\mathbf{H}+2 \mathbf{r} \mathbf{K}}{1+\mathbf{r} \mathbf{H}+\mathbf{r}^{2} \mathbf{K}}
$$

[2].

GENERALIZED THEOREMS

THEOREM 1: Let M be a hypersurface of E^{n+1} and $K_{1}, K_{2}, \ldots, K_{n}$ are the higher order Gaussian curvatures and $k_{1}, k_{2}, \ldots, k_{n}$ the principal curvatures at the point $P \in M$.

Let us define a function

$$
\begin{aligned}
& \Phi: \mathrm{M} \longrightarrow \mathrm{R} \\
& \text { such that } \mathrm{P} \longrightarrow \Phi(\mathrm{P})=\Phi\left(\mathrm{r}, \mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}\right) \\
&=\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(1+\mathrm{rk}_{\mathrm{i}}\right)
\end{aligned}
$$

$\Phi\left(\mathbf{r}, \mathrm{k}_{1}, \mathbf{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}\right)=1+\mathbf{r} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{k}_{\mathrm{i}}+\mathbf{r}^{2} \sum_{\mathrm{i}<\mathrm{j}}^{\mathrm{n}} \mathbf{k}_{\mathrm{i}} \mathbf{k}_{\mathrm{j}}+\ldots$

$$
+r^{n} \prod_{i=1}^{n} k_{i}
$$

or
$\Phi\left(\mathrm{r}_{\mathbf{\prime}} \mathbf{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}\right)=1+\mathbf{r} \mathbf{K}_{1}+\mathrm{r}^{2} \mathbf{K}_{2}+\ldots+\mathbf{r}^{\mathrm{n}} \mathbf{K}_{\mathrm{n}}$,
where $r \in R$ is given in Definition 1.
PROOF: We prove the theorem by induction method.
For $n=1$, the theorem holds.
Actually,

$$
\begin{aligned}
\Phi\left(\mathbf{r}_{\mathbf{k}}^{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{\mathrm{n}}\right) & =\prod_{\mathrm{i}=1}^{1}\left(1+\mathbf{r k}_{\mathbf{i}}\right) \\
& =1+\mathrm{r} \mathrm{k}_{1} \\
& =1+\mathrm{r} \sum_{\mathrm{i}=1}^{1} \mathrm{k}_{\mathrm{i}} \\
& =\mathbf{1}+\mathrm{r} \mathbf{K}_{1}
\end{aligned}
$$

now Suppose that the theorem holds for $n=p$ and show that it is true for $\mathbf{n}=\mathrm{p}+1$:

$$
\begin{aligned}
& \Phi\left(\mathbf{r}, \mathbf{k}_{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{\mathrm{n}}\right)=\prod_{\mathbf{i}=1}^{\mathrm{p}}\left(\mathbf{1}+\mathbf{r k}_{\mathbf{i}}\right) \\
& =1+\mathbf{r} \sum_{i=1}^{p} \mathbf{k}_{\mathbf{i}}+\mathbf{r}^{2} \sum_{i<j}^{p} \mathbf{k}_{\mathbf{i}} \mathbf{k}_{\mathrm{j}}+\ldots \\
& +\mathbf{r}^{\mathbf{p}} \prod_{\mathbf{i}=1}^{\mathbf{p}} \quad \mathbf{k}_{\mathbf{i}} \\
& =1+\mathbf{r} \mathbf{K}_{1}+\mathbf{r}^{2} \mathbf{K}_{2}+\ldots+\mathbf{r}^{\mathbf{p}} \mathbf{K}_{\mathrm{p}} .
\end{aligned}
$$

For $n=\rho+1$, we have

$$
\begin{aligned}
& \Phi\left(\mathrm{r}_{\mathrm{k}}, \mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}\right)=\prod_{\mathrm{i}=1}^{\mathrm{p}+1}\left(\mathbf{l}+\mathrm{rk}_{\mathrm{i}}\right) \\
& =\left[\prod_{\mathbf{i}=1}^{\mathrm{p}}\left(\mathbf{l}+\mathbf{r k}_{\mathbf{i}}\right)\right]\left(\mathbf{l}+\mathbf{r k}_{\mathbf{p}_{+1}}\right) \\
& =\left(1+r \underset{i=1}{\underset{p}{p}} k_{i}+r^{2} \underset{i<j}{\sum} k_{i} k_{j}+\ldots\right. \\
& \left.+\mathbf{r}^{\mathrm{p}} \prod_{\mathrm{i}=1}^{\mathrm{p}} \mathbf{k}_{\mathrm{i}}\right)\left(1+\mathrm{rk}_{\mathrm{p}+1}\right) \\
& =1+\mathbf{r}\left(\sum_{i=1}^{p} \mathbf{k}_{\mathbf{i}}+\mathbf{k}_{\mathbf{p}_{+1}}\right)+\mathbf{r}^{2}\left(\sum_{i<j}^{p} \mathbf{k}_{\mathbf{i}} \mathbf{k}_{\mathrm{j}}\right. \\
& \left.+k_{p_{+1}} \sum_{i=1}^{p} k_{i}\right) \\
& +\ldots+\mathbf{r}^{p}\left(\sum_{i<j<\ldots<s}^{p} \mathbf{k}_{\mathrm{i}} \mathbf{k}_{\mathrm{j}} \ldots \mathbf{k}_{\mathrm{s}}\right. \\
& \text { p times } \\
& \left.+k_{p+1} \sum_{i<j<\ldots<l}^{p} k_{i} k_{j} \ldots k_{1}\right) \\
& \text { p-1 times }
\end{aligned}
$$

$$
\begin{aligned}
& +\mathbf{r}^{\mathbf{p}+1} \mathbf{k}_{\mathbf{p}+1} \prod_{\mathbf{i}=1}^{\mathrm{p}} \quad \mathbf{k}_{\mathrm{i}} \\
& =1+\mathbf{r} \sum_{\mathrm{i}=1}^{\mathrm{p}_{+1}} \mathbf{k}_{\mathbf{i}}+\mathbf{r}^{2} \sum_{\mathrm{i}<\mathrm{j}}^{\mathrm{p}_{+1}} \mathbf{k}_{\mathbf{i}} \mathbf{k}_{\mathbf{j}} \\
& +\ldots+r^{p} \sum_{i<j<\ldots<s}^{p_{+1}} \mathbf{k}_{\mathrm{i}} \mathbf{k}_{\mathbf{j}} \ldots \mathbf{k}_{\mathrm{s}}+\mathbf{r}^{\mathrm{p}+1} \prod_{\mathrm{i}=1}^{\mathrm{p}_{+1}} \mathbf{k}_{\mathbf{i}} \\
& \text { p times } \\
& =\mathbf{1}+\mathbf{r} \mathbf{K}_{1}+\mathbf{r}^{2} \mathbf{K}_{2}+\ldots+\mathbf{r}^{\mathbf{p}} \mathbf{K}_{\mathrm{p}}+\mathbf{r}^{\mathbf{p}+1} \mathbf{K}_{\mathrm{p}+1},
\end{aligned}
$$

which proves the theorem.
THEOREM 2: Let M_{r} be a hypersurface to the parallel hypersurface M of $E^{n+1} . K_{1}, K_{2}, \ldots, K_{n}$ denote the higher order Gaussian curvatures of M, at $P \in M . K_{r}$ and H_{r} generalized Gaussian and mean curvature of M_{r}, at the point $f(P)$.

Suppose the function $\Phi: \mathbf{M} \longrightarrow \mathbf{R}$

$$
\begin{aligned}
\mathbf{P} \longrightarrow \Phi(P) & =\Phi\left(\mathbf{r}, \mathrm{k}_{1}, \mathbf{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}\right) \\
& =\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathbf{1}+\mathrm{rk}_{\mathrm{i}}\right) .
\end{aligned}
$$

Then we have

$$
\mathbf{K}_{r}=\frac{\frac{\partial^{n} \Phi\left(\mathbf{r}, \mathbf{k}_{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{\mathrm{n}}\right)}{(\partial \mathbf{r})^{\mathrm{n}}}}{(\mathbf{n}!) \Phi\left(\mathbf{r}, \mathbf{k}_{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{\mathrm{n}}\right)}
$$

and

$$
\mathbf{H}_{\mathrm{r}}=\frac{\frac{\partial \Phi\left(\mathrm{r}, \mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}\right)}{\partial \mathbf{r}}}{\Phi\left(\mathrm{r}, \mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}\right)} .
$$

PROOF: Let $X_{1}, X_{2}, \ldots, X_{n}$ are the principal directions and $k_{1}, k_{2}, \ldots, k_{n}$ principal curvatures of M, at $P \in M$.

Let $f_{*}\left(X_{1}\right), f_{*}\left(X_{2}\right), \ldots, f_{*}\left(X_{n}\right)$ be principal directions at the point $f(P)$ of M_{r} then we know that [2].
$S_{r}\left(f_{*} X_{1}\right)=\frac{\mathbf{k}_{1}}{1+\mathbf{r k}_{1}} f_{*} X_{1}$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{r}}\left(\mathrm{f}_{*} \mathrm{X}_{2}\right)=\frac{\mathbf{k}_{2}}{1+\mathrm{rk}_{2}} \mathrm{f}_{*} \mathrm{X}_{2} \\
& \cdot \\
& \vdots \\
& \mathrm{~S}_{\mathrm{r}}\left(\mathrm{f}_{*} \mathrm{X}_{\mathrm{n}}\right)=\frac{\mathbf{k}_{\mathrm{n}}}{1+\mathrm{rk}_{\mathrm{n}}} \mathrm{f}_{*} \mathrm{X}_{\mathrm{n}} .
\end{aligned}
$$

Then, we know that, the shape operator of M_{r} is

$$
\mathrm{S}_{\mathrm{r}}=\left[\begin{array}{cccc}
\frac{\mathrm{k}_{1}}{1+\mathrm{rk}_{1}} & 0 & \cdots & 0 \\
0 & \frac{\mathbf{k}_{2}}{1+\mathrm{rk}_{2}} & \cdots & 0 \\
\cdot & \cdot & & . \\
\cdot & \cdot & & \cdot \\
0 & 0 & \cdots & \frac{\mathbf{k}_{\mathrm{n}}}{1+\mathrm{rk}_{\mathrm{n}}}
\end{array}\right]
$$

and

$$
\begin{aligned}
\mathbf{K}_{\mathbf{r}} & =\operatorname{det} \mathrm{S}_{\mathbf{r}} \\
& =\frac{\mathbf{k}_{1}}{1+\mathbf{r k}_{1}} \cdot \frac{\mathbf{k}_{2}}{1+\mathbf{r k}_{2}} \cdots \frac{\mathbf{k}_{\mathrm{n}}}{1+\mathbf{r k}_{\mathrm{n}}} \\
& =\frac{\mathbf{k}_{1} \cdot \mathbf{k}_{1} \ldots \mathbf{k}_{\mathrm{n}}}{\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(1+\mathbf{r k}_{\mathrm{i}}\right)} \\
& =\frac{\prod_{i=1}^{n} \quad \mathbf{k}_{\mathbf{i}}}{\prod_{i=1}^{n}\left(1+\mathbf{r k}_{\mathbf{i}}\right)}
\end{aligned}
$$

and

$$
\Phi\left(\mathbf{r}, \mathbf{k}_{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{\mathrm{n}}\right)=\prod_{\mathbf{i}=1}^{\mathrm{n}} \quad\left(1+\mathrm{rk}_{\mathrm{i}}\right)
$$

then

$$
\mathbf{K}_{r}=\frac{\frac{\partial^{n} \Phi\left(\mathbf{r}, \mathbf{k}_{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{\mathrm{n}}\right)}{(\partial \mathbf{r})^{\mathbf{n}}}}{\left(\mathbf{n}!\Phi\left(\mathbf{r}, \mathbf{k}_{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{\mathrm{n}}\right)\right.}
$$

On the other hand

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{r}}=\mathbf{I z ~ S}_{\mathrm{r}} \\
&=\frac{\mathbf{k}_{1}}{1+\mathbf{r k}_{1}}+\frac{\mathbf{k}_{2}}{1+\mathbf{r k}_{2}}+\ldots+\frac{\mathbf{k}_{\mathrm{n}}}{1+\mathbf{r k}_{\mathrm{n}}} \\
& \frac{\mathbf{k}_{1} \prod_{\mathrm{i}=2}^{\mathrm{n}}\left(1+\mathbf{r k}_{\mathrm{i}}\right)+\left(1+\mathbf{r k _ { 1 }) \mathbf { k } _ { 2 } \prod _ { \mathrm { i } = 3 } ^ { \mathrm { n } } (1 + \mathbf { r k } _ { \mathrm { i } }) + \ldots + \mathbf { k } _ { \mathrm { n } } \prod _ { \mathrm { i } = 1 } ^ { \mathrm { n } - 1 } (1 + \mathbf { r k } _ { \mathrm { i } })}\right.}{\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(1+\mathbf{r k}_{\mathrm{i}}\right)}
\end{aligned}
$$

Since

$$
\Phi\left(\mathbf{r}, \mathbf{k}_{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{\mathrm{n}}\right)=\prod_{\mathrm{i}=1}^{\mathrm{n}} \quad\left(\mathbf{l}+\mathbf{r k}_{\mathrm{i}}\right)
$$

we get that

$$
\mathbf{H}_{\mathbf{r}}=\frac{\frac{\partial \Phi\left(\mathbf{r}, \mathbf{k}_{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{\mathrm{n}}\right)}{\partial \mathbf{r}}}{\Phi\left(\mathbf{r}, \mathbf{k}_{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{\mathrm{n}}\right)}
$$

The case $\mathbf{n}=2$ of this theorem reduces to the result which is given in [2].

REFERENCES

1 HACISALİHOĞLU, H.H., 1982, Diferensiyel Geometri. Inönü Üniversitesi Fen-Edebiyat Fakïltesi Yayınlari, Mat. no: 2.

2 HICKS, NOEL J., 1963. Connexion Preserving, Conformal and Parallel maps. Reccived january 3o. pp: 295-302.

3 HICKS, NOEL, J., 1974. Notes on Differential Geometry. Von Nostrand Reinhold Company, London.
4 ÖZDAMAR, E-HACISALİHOGLU, H.H., 1977. Higher Order Gaussian Curvatures and Fundamental Forms. Journal of the Fac. Sci. of the K.T.U.Vol. 1. Fase 9. pp: 99-116 series. MA: Mathematics

5 KOBAYASHI, S-NOMIZU, K., 1969. Foundations of Differential Geometry. John Wiley Sons, Inc. Volume II. pp: 23-33.

