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ABSTRACT

In this paper, we proved the converse of Riemann’s theorem and then applied it to Cauchy
product series of alternating series of real terms. Moreover, we showed that the concept of un-
conditionally convergence of infinite series can be replaced by the boundedness of sequence of

partial sums of every rearranged series of series.

1. INTRODUCTION

In this paper, the word permutation will be used to denote any function
p : N > N, whose domain and range is N the natural numbers, and
that is also one to one. The set of all permutations will be denoted by the

o

symbol S(IN). Let X ap be a series of real terms. Put
n=1

N, = meN:a, >0}, N_= {neN:ap <0}

A series 2 ay is said to be of the type (o) or (8), if Y ap=
neN_

and Y lagl < o0, 0r X ap < o and Y ap = — o0,
neN_ nelN, neN_

respectively, And the same series is said to be of the type (y) if

X ap = o and 2 ap=-— o [3].
neN, neN_

We call that Xay, is said to be of the type (vyg) if it is of the type (y)
and ap - 0 as n > oo,

The following theorem, discovered by Riemann in 1849, can be found
in most standart text books on Advanced Caleulus, for example [1],
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oC
p- 308. Theorem 1.1. Suppose a series of real terms ¥ a; if of the
n=}
type (yo). Suppose further that x and y are numbers in the closed interval
[—o0, 0] with x < y. Then, there exisis p € S(N) for which

n n
liminf X apg) = x and lim sup 2 apm =y.
n->c0 i=1 n->0 i==]

This result was generalized by Oztiirk [4]. Besides it has been char-
acterized in [6], [7] the permutation functions preserving convergence
and even divergence of series, by defining the absolute equivalence of
permutations.

o
Definition 1.1. A series X a, «f real or complex numbers is
n={

said to be unconditionally convergent if ap(n) is convergent

T M8

for each p ¢ S(N) [5].

Theorem 1.2. A series of real or complex numbers is unconditionally con-
vergent if and only if it is absolutely convergent. [5].

The purpose of this paper is to prove the converse of Theorem 1.2,
and to apply it to Cauchy product series of alternating series, (and in

oC
~

addition to these, to show that convergence of apm) for each

n=]

p € S(N) in Definition 1.1 can be replaced by boundedness of sequence
n

( = ap(i)) for each p e S(IN).

\ i=]

2. We shall now prove the following theorems.

Theorem 2.1. Suppose x and y are numbers in the closed interval [- o,
o] with x < y. If there exists p ¢ S(IN) for which

n n
lm inf 'Z ap¢y = X and lim sup _E apa) =Y,
n->o 1=] N0 i=]

then, 2a, is of the type (v().

o<
Proof. Suppose that the scries X ay is not of the type (yg). In
n=i

this case, there are two cases to consider for the sequence {ap),
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a) (an) has the terms with the same sign after a certain step or,

b) (ap) has infinitely many positive real numbers and infinitely
many negative real numbers.

In the case of (a), the series is either absolutely convergent or

o

% ap = -+ 0. Because its sequence of partial sums is monotone af-
n=1
ter a certain step. This contradicts the hypothesis of the the‘orem. In
the case of (b), the following cases occur.

(1) Y ap < oo, 2 ap=—o,ap—~>0 as n— oo,
neN_ neN_ . ;

(ii) Z lap| < o
neN

(iii) 2 ap < oo, = anz—oo,én+—>Oésn—+oo
neN, neN_

(iv) Y ap= X2 ap>—o,ap>0asn-> oo .
neN, neN_ N

) 2 ap= o, 2 Jlap| < o0,ap 4> 0 asn-» ©
neN, - neN_

(vi) X ap= o 2 ap=— o0, ap —+>0 asn—> .
neN, neN_ o

It is clear that all of the cases mentioned above contradict hypothesis
of the theorem. Thus, it must be of the type (y;), completing the proof.

Hence, we can write the following result by combining Theorem
1.1 and Theorem 2.1.

o« - .
Corollary 2.2. Let X ap be a series of real numbers. Then, for any
n=1

X,y € [~o0, 0] w1th x <y, there exists a permutatlon PE S(N) such
that

n
lim inf E apg) = x and lim sup 2 apy =y
n-w i=1 n- i=1

if and only if it is of the type (y).

o
Theorem 2.3. Assume E (—1)rtla, and Y (—1)ntihy,  be . two
oo = n=] ) R

n=
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alternating series of the type (yg) such that m*a; = O(1) and n%b,=
O (1), where } <s, z < 1. Then for any x, y € [—o, 0] with x <y,

there exists p € S(N) for which o

n n
“lim inf X cpg = x and. lim sup T epgy =y
N0 i=] n->e0 i=1
o
where X ¢y is the series of Cauchy product of the given series.
. n=] - .

Proof. Since, for each n e N, -

en = X (—1)itHa(—1)o-i+2hy 5,
i=1

n
= (=Drtt X ajhp g4,
SR FEERT L) N .

oC
¥ cp is an alternating series. On the other hand, it is clear that
n=1

: T oC ) o« 2k-1
2 epn = X e = X X abyxg
neN, k=1 k=1 i=1
. and '
o ] o 2k
> Cp == D) ——Cox = = p aib2k,i+1.
neN_ k=1 : k=1 i=1-

We now want to show that e, is of the type (yo). First of all, let us
show that it is of the type (y). It is easy to calculate that

n 2k—1
S+n= 24 E aink_i
. k=1" i=1
n n v n-1 n-1- . -
= X ax; Z brena+ Z ai Z brxi)
i=1 k=i i=1 k=i
and
n 2k* i
§p = > 2 ajbzk_i +1
=1 k=i

n B ) n . n . n o
=% any I byeno+ I oan X byxoigre
k=i i=1 k=i
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By considering above equalities, we can write lim st, = lim s— = o
since the given series are of the type (y). Thus X¢y is of the type (y).
Finally we show that lim, ¢; = 0. Since k%ay = O(1) and kzb = O(1),

it can be written, for each n,

; 1
b = 00 2 RGeS

len| =

TM::

Now, denote min ib, z} by r. Then, we have

o1 =002 () =00 e & ()

On the other hand, by the fact that ja+b|F < |a|r + [bT(3 <r < 1)

L | o -]
=0 (+D) ey K

|

If r=1 and 1 L <r<1, we obtain

_ 1 ¢ 1 AnmAd) s e
ICnJ == O(].) n+1 k§1 T - 0(1) T >0 -as n-> 00,
and

1 ~n oo I -
len | :O(I)W 1<2=:1 _kr—:O(l)(_n—l—l)w

- ‘O as n - 00,
respectively, which implies cn— 0 as n > co. Thus Ecﬁ if of :the‘“type
(Yo)- This step completes the proof of the theorem together with theorem
1.1.

We shall now show that the convergence of the series 2 ap(k)‘

in Deflnltlon 1.1 can be replaced by the boundedness of the sequence

n n
( )X ap(k)) which is weaker than the convergence of ( 2 ap(k))
k=]

as a result of the following theorem.

Theorem 2.4. A-series 2 ax of real terms-is absolutely convergent
k=1
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n

if and only if the sequence (E ap(k)) is bounded for every

p  S(N).

Proof. Necessity. Let Xay of real terms be an absolutely convergent se-

o w
ries having sum S. Then, since, for every p € S (N), 2 apg also

n
converges absolutely and has sum S (see [2]), the sequence( z ap(k)>
, k=
converges to S and, so that it is also bounded for every p e S(N).
n
Sufficiency. Let ( b) ap(k)) is bounded for every p € S(N). Suppose
k=1 - . . .

oC
that on contrary, ¥ Jag| = oo. Then X ay is either conditionally
k=1
convergent or divergent. If it is conditionally convergent, then it also
of the type (vo), so that, by Riemann’s theorem, there exists a permu-

o®© n
tation p € S (N) such that £ apy) = oo, that is, im X apk) = oo,
k=] K=t

which contradicts our assumption. Suppose now that the series

[+ o
3  ay is divergent. Then, for (ay), there exist two cases to consider:
k=1

a) (ax) has the same signs after a certain step
or,

b) (ax) has infinitely many positive numbers and infinitely many
negative numbers.

In the first case, ax = -+ c0. In the second case, the series is of type
(B) or of the type («) of of the type (y). If it is either of the type (3) or
of the type («), T ax = 4+ co. If it is of the type (y), then
B o

¥ ap@x) = oo for some p € S (P). In fact, let us denote the series of
k=1 ’

o
positive numbers and the negative numbers of X ax by £  a," and
k=1
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Y a,~, respectively. Then, there exists on m € N such that

ml
p ak+ > 1 — ap”
k=1

oC
since X a,* = . Now chose a number m; such that:
k=]
my
m; <my and X aF >2-—a;" —a".
k=1

By continuing in this way, in general, we can establish the positive in-
tegers my provided that my > myy 3 (v = 2,3, ..) for which

my
X oat >v—a;T —ay — .. — ay.
k=1
Thus {(a;* ..., 87 , a7, at yens @7, 857 ..., AT sendt Ay L)
m, m, +] m, m_ -+l m_

is a rearrangement of (ax). Now if we denote its sequeuce of partial sums
by (sn), then (s ) is a subsequence of (sp) and, for each v e N
m_-+v

my v
$ = 2 agt + T ax >v.
m_+v k=1 k=1

Therefore sup sy = oco. This contradicts our assumption, too. Hence,
n

X lag| < o0, completing the proof of the theorem.

By considering Theorem 1.2 and the above theorem we can give the
following main result which intreduces an alternative result for uncon-
ditionally convergence (Def. 1.1).

Corollary 2.5. A series X ay of real terms is unconditionally convergent

n

if and only if the sequence ( z ap(k)) is bounded for every

p € S(N).

OZET

Bu ¢ahigmada, Riemann Teoremi’nin tersi ispat edilerek, reel te-
rimli alterne serilerin Cauchy ¢arpimlan serisine uygulanmistir. Aynca,
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serilerin sartsiz yakinsakhk kavraminin, yeniden diizenlenmis serilerin
kismi toplamlar dizisinin smirhlihg ile degistirilebilecegi gosterilmistir.
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