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ABSTRACT

Birman and Nomizu stadied trigonometry on the Lorentzian plane [1—2], and Yaglom

defined rotation and motion for that plane [6].

Tn this paper we studied the l-parameter motion on the Lorentzian plane and obtained the

properties of this motion resembling to the Euclidean plane.

INTRODUCTION

1- Parameter motion on the Euclidean plane is known very well
[4]. The velocities are defined in Section 1 and relations between them
are obtained in the sense of Lorentz. Section 2 includes centrodes and
their properties. Accelerations are studied in the last section.

Lorentzian plane is a real two-dimensional vector space which is
equipped with the inner product

<X, y L = X1y1 — Xa¥2
where x = (Xy, X2), ¥ = (y1, ¥2) € R2. The Lorentzian plane is repre-
sented by L, or for the sake of shortness only by L. And we will use
notation “LM”", which will appear frequently in this paper, instead of
“In the sense of Lorentz”. Also LfL’, will be used as the motion of
L according to L’ where L and L’ are moving and fixed Lorentzian
planes. respectively.

I. 1- PARAMETER MOTIONS ON THE LORENTZIAN PLANE

I. 1. Derivative Formulas

Let J0, t, 1} and {0, 1, 1»’} be moving and fixed coordinate
Vo b L2 1s 2y g
frames of L and L', respectively. Thus
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60/ == ; == _L)l uq *Jr‘ _;2 s, (ul, Uy € R). (1)

At the initial time t = t;, let’s consider O and O’ are coincident.
So we obtain;

?1:?10h® +?25h®
2)

L2:Lllshg +L'20hQ
where @ is LM rotational angle.
Definition 1,1.1: If the functions u; = uy (t), uy == uy(t) and @ = & (t)

have the same domain as ty << t < t, then l-parameter LM motion of
L on L’ is defined.

‘From (1) and (2) the LM derivative formulas of the LfL’ are
obtained as follows ‘ :

> |

-

L1:L2'®' I
=y o l} | 3)

=y (o +uy @)+ oy (u A+ wy @)
where “.”” denotes the derivation with respect to “t”.
I. 2 Velocities

Definition L2,1: Let X = ; x; - :2 x5 be a moving point of L. The
velocity of X with respect to L is known as LM relative velocity of X.

And it is shown by i/)r

By the definition above,

>

Vr = 11 X3 - Ly Xa. ‘ o (44)

Definition 1.2.2: Let X be a fixed point of L. The velocity of X according
to L’ will be known as LM sliding velocity of X. And it is shown by \_}f.

By the definition above we obtain _‘}f as follows

V= i — (m— ) 8+ bz - (w—x) 2} ()
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Definition I.2.3: Let X be a moving point in L. The velocity -of X

according to L’ is defined as LM absolute velocity. And it is shown by Va.

Theorem 1.21: Let X be a moving peint in- L and {}r» V4 and V¢ the
relative, absolute and sliding velocities of X, respectively. Then

Va - Vf + Vr .
The proof is obvious by using the definitions of velocities above.

Result 1.2.1: Let X be a fixed point in L, then
%a == Gf .
I, CENTRODES

Definition II, 1: Let o be the LM rotation angle of L L', Then,

do

a =7

will be defined as angular velocity of the LM motion.

We assume that & s 0 for the LM motion. That is the M motion
is not only a translation.

Now we will investigate the points, at which the V; is vanish for
every t € [ty, t;]. It gives us permission to obtain the concept of rota-
tion pole for the LM motion.

Theorem IL1: If angular velocity is not zero, then there is a unique
point whose sliding velocity is zero for every t € [ty, t;].

Proof: If \71 =0 then using (5) we obtain the unique point
P = (py, pp) such as
PL=u 4 —— , pr= upt —— . (6)
(%] %]

:-7 So that the point . P is fixed in the two L and L’ planes at the same
time. As a result, we can give the following definition.
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Defimtion II. 2: The point P, obtained from Theorem II.1is defined
as the rotation pole or the instantanious rotation pole centre of the
l-parameter lorentzian motion L[ L'

Theorem 1L, 2: Let P be rotation pole of L] L’ and X be a moving point

of L’ then PX and \7f are LM perpendichlar vectors to each other. .

Proof: By using (5) we obtain;
uy = (pp —up) & and vy = (’pl —uy) O
Therefore a new expression is obtained for V¢ as

Vi = {(x2 —p2) u + (x1—p1) w2} .

On the other hand

PX = (xy —p1) vy + (x2—p2) 2,

it is clear that,

<P_§<, §f>1, = 0 .

Result IL, 1: In a L{ L’ LM motion, the focus of X point of L is an orbit
that it’s normals pass thiough the rotation pole P.

Theorem II 3: Let X be a moving point in L and P be rotation pole
of the L{ L’ motion, then

-

Vil = 16| [PX]p -

Definition II. 3: The orbit of rotation pole P, for each t € [tg, t;], of
the L plane is named as movable pole curve. And the orbit of P on
the L’ plane is named as stable pole curve. And they are shown as (P)
and (P’), respectively.

Theorem TI, 4: The velocities of (P) and (P’) are the same for each t

[th t1]'

Proof: The point P is the solution  of the equation {/:f — 0. So the
equality given at the Theeren 1.2.1. becames:
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‘7&,: —{71'
which completes the proof of the theorem.
Resuit I, 2: During the motion LJ/L’, (P) and (P’) roll, without
sliding, upon each other. e
III, ACCELERATIONS

In this section we will define LM relative, absolute, sliding and
Coriolis acceleration vectors. Mentioned vectors above will be represented

ir, i))a,, Bf and i;e’ respectively.

Definition IfI, 1: Let L and L’ be movable and fixed Lorentzian planes,
respectiVeiy and X be a mbving point in L and \7, be the relative
velocity vector of X. So derivating {’G according to t, we obtain LM

—

relative. acceleration vector b, as:
- 5 - .. -
br = Vr = 11X1 + LaXg
- - - -, -,
where X = xj1; + x515 and Vy = 4yx1 + 5%, .
Va = b, is the LM absolute acceleration vector of X according

to the fixed Lorentzian plane L’.

Now let’s consider that X is a fixed point in L, then the accelera-
tion vector of X according to L’ is named LM sliding acceleration
vector of X and

b= Vi=—u P& + (p1—x1) 82+ (pr— %) B} — 12 {p12 +
(P2 —%2) &2+ (p1—x1) S }.
Now let X be a moving point in the moving Lorentzian plane L,
then
ba=Va=(Vi+ Vi) =V +V,

and so
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by = :H {1;2@. + (pr—x1) o2 (p2—x2) &} ——':2 {P1 o +

(pr—x2) 22+ (p1—x1) B} + 20 {uxa + w1} + uxy 4 1%

where

l

be =22 {ux2 + ux} - (7

will be named LM Coriolis acceleration vector of X. So we can give the
following theorem.

Theorem III, 1: Let X be a moving point in L then,

,ba:,bf+bc+br . . ;
Result IIL. 1: If X a fixed point of L in the L] L’ motion then,

ba = by .

Theorem III, 2: The LM b, Coriolis acceleration vector and V; relative
velocity vector are perpendicular to each other.

Proof: As we know from (4) and (7)
Ve = uxs + uxz

bc = Zé’ {Lp'iz —{— Lzl’;l} .

So it is obvious that
<Vr, hc>L =0

Theorem III, 3: Let X be a moving point in L and b = O then L/ L’
motion is only a slide and vice versa.

Proof: Because of I;C ~ O then

2@ { 11Xy -+ Lzﬁ;l} =0
and then,
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So & is constant. That is L | L’ must be a slide.

The other side of the theorem is obvious. .

The pdint at which i:;f = 6 provi'des us the LM acceleratiofl i\)Olé‘
concept for L L’ motion.

Theorem III, 4: If Q 4 Q 2 # 0 and the LM pole point at a “t” time.
is P = (py, pa), then at the same “t” time the LM acceleration pole
point’s coordinates are - '

202 —po)o . (@ G2—p 5) &
g4 — 52 gt — g*

X1 = p1 +

Proof: By the explanation before the theorem, b; must be zero. So

—i1 P28 H(p1—%1) 57+ (pr—x2) & }—13 {P1 & -+ (Pr—x2) &2 (p1x1) ‘30}

and then

I;zé=(X1—P1) 5Q+(X2—P2)é @
I;l Z = (x2 — p2) z2 + (x1—p1) @

is obtained. Since the coefficient determinant of (8) is ¥*— @2 and dif-
ferent from zero, we have the solution of the system as

0202 — p15) & 0102 — py0) &
s = py - P2~ P19) Xy = py 4+ _(P1 P29)

@t — 2 g.‘t_éz

OZET

Birman ve Nomizu Lorentz diizlemi iizerinde trigonometri ¢ahstilar
[1-2]. Yaglom bu diizlem iizerinde dénmeyi ve hareketi tantmladi [6].

Biz bu ¢alismada Lorentz diizlemi iizerinde l-parametreli hareket-
leri cahistik ve Oklid diizlemindeki I-parametreli hareketler icin var olan
ozelliklerin benzerlerini Lorentzian hareketler icin elde ettik.
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