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ABSTRACT

The structural theory of infinite matrices in the classes (L, (P)s tec)s (to(®)s ©)s (UP) toche
(€o(p)s to (@) OF (&, 1, (p)) have been studied. Some of our results include as a special cases, the

earlier results obtained by Rao.

I. INTRODUCTION

For a sequence p == (pi) of positive real numbers, the following
classes of sequences have been introduced and studied in [1].

S
p) = {x: T [xx| < o}

k=1

Pk
te(p) = {x: sup k| << oo}
pv'

e(p) = {x: |xxg—t| - 0 for some t}.

o
co(p) = ix: jxk| = 0}

When px = p > 0, for all k, then (p) = tp, tc(p) = tee, ¢(p) = ¢,
co(p) = cg, where 1j, e, ¢ and ¢y are respectively the spaces of
p-summable, bounded, convergent and null sequences. In particular, if

(px) = (—11(—-) in t(p) and cy(p) then these spaces are called spaces of

analytic and entire sequences, respectively. The works on these spaces
has been carried out by Rao in [6], [7], and by other authors. The spa-
ces (p), tx(p), ¢(p) and cy(p) are linear spaces under coordinatewise ad-
dition and scalar multiplication if and only if p € 1« see [4].
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Let A and ¢ be two nonempty subsets of the space  of all complex
sequences. Then we denote the class of all infinite matrices A:x - u by
(», ) such that

(An(x)> = (i ankxk)nleg,_, .

n=1 k=1

oC
whenever x € 2, the convergence of X amxy (n=1,2,..) being
_ k=1

assumed.

Recently, the structure theory of infinite matrices transforming
spaces of the analytic, entire, bounded and convergent sequences has
been studied by Rao [6]. The present paper is devoted to the struc-
t‘ural theory of the infinite matrices in the classes (1x(p), ), (toc(p), ©)s
((p); vec), (cO( ), te(q)) and (c, Loc(p)) Our results include as a special
case, the earlier results obtained by Rao [6]. To find the necessary and
sufficient conditions for infinite matrices to be in above mentioned clas-

ses one may refer to Chaudhary and Nanda [1].

2. An infinite :ma,trix A €(L°c(p), tec) if and only if “f.01j‘ all i‘ht‘eger
N > 1 we have ' ’

o 1 / Pk .
sup X lang| N < .
n k=1

Let us start with the following theorems:

Theorem 1. Let p = (px) € it and N > 1 be any integer then the
class of matrix operators (1(p), t«) is a complete metric space with the
metric

DN (A, B) = sup{ Z lane—bnk [N ;n=1,2,..},

where A= (ank), = (bnx) are in (o(p)s ta)-

“Proof. It can be proved by the standard arguments that Dy is a
metric. for every N > 1. Finally let oy = NPk and A®; i=1, 2,.
with A®) = (alnk) be a Cauchy sequence in (te{P)s tec) Then for a glveu
e >0 there is'a positive integer iy such that’

(1 o DAY, AD) <&, (>, § = o)

Since for cach fixed k and n,
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oC
la®— ald | < % o | a® — ald | <e(i>ipj > i)
nk nk k=1 nk nk

therefore (A1) is a Cauchy sequence of complex numbers and hence
converge,

Again > 0, gives the existence of a positive integer ij, and

€
2K
A==(apk) such that for each fixed k

€

ok f a®d — ank ‘ < 2k ’ (l = iO)'
nk
Thus
a o A
ook |a® —oap | < > - < & (i =ig).
=1 nk k=] ,2 -

It remains to show that A = (apy) é(Loc(p), Lec)e

Letting j —+ o0 in (1), we have

o
Z oax |age — a® | < e
k=1 nk

this implies. that

o o ac
e > ¥ og japk—a® | > X ox jang |— 2 ax | a®) |,
k=] nk k=1 k=1 nk

Now, AW € (1c(p), 1) gives us the required result.

Corollary 2. Let p = (px) € 1 and Y(p) = (t«(p), ¢), Then the class
Y(p) is a closed subset of (1x(p), t«) and hence a complete metric space
with the metric Dy for each N > 1.;

“Proof. The sct ¢ is a subspace of the BK-space i, therefore Y(p)
is a subset of (Lx(p), t«). Let Y(p) denotes the closure of Y(p) in the met-
ric topology Dx. Let A € Y(p), then there exists a sequence (A(l)) in
Y(p) such that .

(1) Dx(Al, A) >0 as i+ 0.

Thus for each ¢ >> 0 there exists ig > 0 such that
Z ock[a(l)—ank]<a(1>10)
k=1 nk

This implies that
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oC =<
D oox lang | < 2 ax |a® | 4+ g (i >=1dg)
k=1 k=1 nk

-~ Henee, A = (ank) € (tc (p), t«c). Finally to prove (a) e Y(p):
(Ato)) e Y(p) gives column limits of A(o) exists, hence for each ¢ > 0
there exists a positive integer ny such that for each fixed k

1o ) c
lank — amk | < B2k (m = ny, n > ng),
then
o io iO c
z“Gﬁk|"=‘nk—"amk]<——-—'-
k=1 3

Now from (1) there is a positive integer iy such that
i

oC
X oax |ank — ank | <
k=1 3

€

For each fixed n and k we have the following,

o o 1g
Y ok |apk—amk | < X ok | ank — ank |
k=1 k=1
« ig ig o« ig
4+ X ok | ank — amk | + ¥ ok |amk-amk
k=1 k=1
e g g
< e =
3 + 3 + 3
Hence

lank — amk | < ——E—, for all k.
o ‘

This shows that the column limit of the matrix. A exists. Thu$ the mat-

rix A belongs to Y(p): Arbitrariness of A in Y(p) shows that Y(p) is
closed in the complete metric space (L«(p), L«), which completes the proof.

Theorem 3. The space (t«(p), t«c) is separable.

Proof. Let M denotes the set of all matrices B = (bpx) with rational
(complex) entries for which integers n;, q; exists such that bpx = 0
whenever n > n;, or k > q; or both, Then M is a countable subset of
(vc(p)> tc). It is sufficient to prove that M is dense in (1(p), toc). Let A =
(ank) be any element of (1«(p), t«), then for each ¢ >> 0 there exists n; >0
such that :
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o 1/ p; c
2 ]anj | N < —2—‘ .
j=n1+1

Since rationals (complex) are dense in C, therefore for each entry ap;
in A there is a rational entry by close to it. So we can find a matrix
B = (bnx) € M satisfying

n; 1/p;

I an—bn IN <
=1

It follows that

.. n X . 1 / p] o 1 / p]
D(A,B) = X Jany—by; [N + X |an;—bnj [N
=1 j=ni+1
b 1/p; * 1/ pj
= X |apj—bn;|N - Z  Jang IN
i=1 j=n1+1

e oA
R R N

80 (t(p), L) is separable.

3. For the remainder of this paper q = (qx) will denote a sequence
of strictly positive real numbers such that

-1——I—~—1——=1f0rallk.
Px qx

Let Q denotes the set of all p = (pi) for which there exists N = N(p)
> 1 such that

-1/ px
N < oo,
1

¢

k

[}

Also it is easy to prove that p € Q implies px — 0 [2].
A more general proof of the following lemma may be found in [3].

Lemma 4. Let p € Q, then A e ((p), 1) if and only if

Ik
qr+1
D = sup |apk | << o0,
nk

Lemma 5[2]. Let p € Q, then A € (co(p),t«(p’)) if and only if
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(L + L)
Px P'n

sup |apg | < oD,
. n’k -

Now we prove the following theorems.

Theorem 6. Let p € Q, then the class of matrix operators (1(p),t«)
is complete metric space with the metric.
W
d(A, B) = sup {lam—bu | Tl k=12 .1
Proof. It is obvious that ((x(p), 1), d) is a metric space. Now let

(A®) be any Cauchy sequence in it, then for each ¢ >> 0 there exisst
a positive integer iy such that

dAD, AD) <& i,j > i

That is,
qx+-1

lalpe—aine | < T j

\Y
=

Hence for each fixed n,k we have

) ‘
a - apg (i > o).

nk
(et
Since ¢ Tk > 0, therefore there exists a positive integer iy, such
that ‘
| qt1
(l) . . .
la  —oa,| <=z T §>i,
nk
Thus

d(ALA) <= (i, = i)

G
AISO —(I}{—+r < 1 for all k7 and

gives
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M sl L o L
1 i -
ot > lank — ank ] ‘Ik+1 > ‘ank ] qk+l o {ank i qk—i—-l

It follows that

gk " qx
. . L
aet+1 lan | g1 + e < .

I

lank |

Hence, A e (((p), t«)-

Theorem 7. Let p € Q, then the class (co(p), to(p’)) is complete

metric space with the metric
' ( o1 )—1
- Pk P'n
d’(A, B) = sup {|ank — bnk | ;mk=1,2,..}
where A = (ank), B = (bnk) € (co(p), t(p’))-

Proof. It can be proved on the lines of Theorem 6. Now if we put
Px = -llg_ € Q for N = 2 and p';x = e. Then the metric coincide with
the metric given by Rao [6].
k The following lemrl;a may easily be obtained.

Lemma 8. An infinite matrix A € (¢, t(p)) if and only if A satisfies

o Pn
sup ( 2% ank] ) < oo,
n k=1

Theorem 9. Let inf py > 0, then (¢, 1<(p)) is a complete linear met-
ric space paranormed by g, where '

oc pn/ M
gp(A) = sup ( Y ang] )

k=1 /
where M = max (1, sup px), and A = (aux) € (c. Lx(p)-
Proof. It can be proved by the standard arguments that gy is a

paranorm and also it is complete. Since, gp(A) = 0 implies A = 0,
therefore (c, 1.(p)) is a complete linear metric space.

Remark. The condition inf px >> 0 in Theorem 9 can not be drop-
ped. It follows from the following example:
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Example. Let py = 11{ for all k,

A = (Ank) = (Snk)

where 8 is Kronecker. Then A ¢ (¢, t(p)). Now consider 0 <. a] < 1
then |[A|1/k < 1 for all k and |A|1/kX > 1 as k - oo so that

gp(A) = sup (X [y ))m

n k

= sup ([1])if0 = 1.
n

Hence 2A ;5. 0 as A -> 0 and thus g, is not a paranorm.

Theorem 10. Let E < (¢, to(p)) be compact then given ¢ > 0 there
is some iy = i (¢) such that for all n

o pn/ :NI
( b ‘anké ) < ¢

k=i+1
for all A cE and i > i,
Proof. Proof is easy one may see [5].
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