ON THE BLASCHKE INVARIANTS OF THE AXOIDS OF HELICAL MOTIONS

S. KELEŞ — A.I. SIVRIDAĞ

(Received Sep. 14, 1990; Accepted Nov. 8, 1991)

ABSTRACT

In this paper the relations between the invariants of the moving axoid $\widetilde{\varnothing}$ and the fixed axoid \varnothing under the helical motions of order k in E^n are discussed. Moreover we have the state-tement (17) for the pair of the 2-ruled surfaces $\widetilde{\Psi} \subset \widetilde{\varnothing}$ and $\Psi \subset \varnothing$ which correspond to each other under the helical motion of order k in E^n .

1. HELICAL MOTIONS OF ORDER k

A motion of Eⁿ is described in matrix notation by

(1)
$$x = A\bar{x} + c$$
, $AA^T = A^TA = I$

where AT is the transposed of the orthogonal matrix A and

$$A:J \to O$$
 (n), $c:J \to IR^n$

are functions of differentiability class $C^r(r > 3)$ on a real interval J. Considering a motion as a movement of the space \bar{E} against the space E the co-ordinate vector \bar{x} in (1) describes a point of so-called moving space \bar{E} and x a point of the so-called fixed space E.

Let \bar{x} be fixed point in \bar{E} then (1) defines a parametrized curve in E which is called the trajectory curve of x under the motion. From (1) by differentiating with respect to t we get

(2)
$$\hat{x} = B(x - c) + c, \quad B = AA^T$$

where $B+B^T=0$, since the matrix A is orthogonal. Therefore in the case of even dimension it is possible that the determinant |B| may not vanish. If |B| (t) $|\neq 0$ for all $t \in J$, we get exactly one solution P(t) of the equation

(3)
$$B(t) (P-c(t)) + \tilde{c} = 0$$
.

The point P (t) is called the pole of the motion at the instant t which is the center of the instantaneous rotation of the motion for $t \in J$. If

|B| dose'nt vanish on J, by cosidering the regularity condition of the motion we get a differentiable curve $P:J \to E$ of poles in the fixed space E, called the fixed pole curve. By (1) there is uniquely determined a moving pole curve $P:J \to E$ from the fixed pole curve point to point on J.

H.R. Müller proved in [4]; under the motions the fixed pole curve and the moving pole curve are rolling on each other without sliding. Merely in the case n=2 the motion is determined by the pair of rolling pole curves.

In all other cases (that means |B|=0), especially for odd n, we obtain by the rules of Linear Algebra: that for every $t\in J$ there exists a unit vector $e(t)\in kernB(t)$ and $\lambda(t)\in R$ so that the solutions y of the equation

(4) B (t)
$$(y-c(t)) + c(t) = \lambda(t) e(t)$$

fill a uniquely determined linear subspace $E_k(t) \subset E^n$ with the dimension k=n—rankB. $E_k(t)$ is the axis of the instantaneous screw ($\lambda \neq 0$) of the motion or the axis of the instantaneous rotation ($\lambda = 0$) and will be called the instantaneous axis of the motion in $t \in J$ [1].

If |B|=0 on the whole interval J under the regularity conditions we obtain a generalized ruled surface of dimension k+1 in the fixed space E generated by the instantaneous axes E_k (t), $t\in J$, which we call the fixed axoid \varnothing of the motion. The fixed axoid \varnothing determines the moving axoid Ψ in the moving space E generator to generator by (1). $\overline{\varnothing}$ and \varnothing are mapped upon each other by the same values of parameter. In this second case Müller proved in [4]: The axoids $\overline{\varnothing}$, \varnothing of a motion in E^n touch each other along every common pair $E_k(t)\subset \varnothing$, $\overline{E}_k(t)\subset \overline{\varnothing}$ for all $t\in J$ by rolling and sliding upon each other under the motion. Such a motion is called an (instantaneous) helical motion of order k in E^n [1]. A helical motion of order k is a pure rolling for $\lambda=0$.

For the analytical representation of an axoid \varnothing we choose a leading curve y in the central (resp. edge) ruled surface $\Omega \subset \varnothing$ transversal to the generators. In [2] it is shown that there exists a distinguished moving orthonormal frame (ONF) $\{e_1, e_2, \dots, e_k\}$ of \varnothing with the properties:

- (i) $\{e_1, e_2, ..., e_k\}$ is an ONF of the $E_k(t)$,
- $\begin{array}{ll} \text{(ii)} & \{e_{m+1},\,e_{m+2},\,\dots,\,e_k\} \ \ \text{is an ONF of the central space.} \\ \\ & z^{k-m} \ (\text{resp. the edge space} \ K^{k-m} \subset E_k \ (t)) \end{array}$

$$\begin{array}{lll} \mbox{(iii)} \ \dot{e}_{\sigma} & = & \sum\limits_{\nu=1}^{k} \, \alpha_{\sigma\nu} \, e_{\nu} \, {}^{+}\!\kappa_{\sigma} \, a_{k+\sigma}, & & 1 \leq \sigma \leq m, \\ \\ \dot{e}_{m+\rho} & = & \sum\limits_{i=1}^{m} \, \alpha_{(m+\rho)i} e_{i}, & & 1 \leq _{\rho}, \, _{\chi} \leq k-m, \end{array}$$

(5) with
$$\kappa_{\sigma} > 0$$
, $\alpha_{\nu} = -\alpha_{\nu}$, $\alpha_{(m+\rho)} = 0$

(iv)
$$\{e_1, \ldots, e_k, a_{k+1}, \ldots, a_{k+m}\}$$
 is an ONF.

A leading curve y of an axoid \varnothing is a leading curve of the edge (resp. central) ruled surface $\Omega \subseteq \varnothing$ too iff its tangent vector has the form

(6)
$$\dot{y} = \sum_{\nu=1}^{k} \zeta_{\nu} e_{\nu} + \eta_{m+1} a_{k+m+1}$$

for $\gamma_{m+1} \neq 0$, a_{k+m+1} is a unit vector well defined up to the sign with the property that $\{e_1, \ldots, e_k, a_{k+1}, \ldots, a_{k+m}, a_{k+m+1}\}$ is an ONF of the tangent bundle of \varnothing . One shows: $\gamma_{m+1}(t) = 0$ in $t \in J$ iff the generator $E_k(t) \subset \varnothing$ contain the edge space $K^{k-m}(t)$.

Let $\overline{\varnothing}$ and \varnothing be the corresponding axoids of the given helical motion of order k in E^n and $\{\bar{e}_1, \ldots, \bar{e}_k\}$ is a principal ONF of the moving axoid $\overline{\varnothing}$. Then the equations (iii) hold for \bar{e}_i with barred coefficients, $\overline{\varnothing}$ has the parameter representation on the interval J by

$$\bar{z}\;(t,\,u_{1},\,...\,,\!u_{k})=\bar{y}\;(t)+\sum_{\nu=1}^{k}\;u_{\nu}\bar{\epsilon}_{\nu}\;(t),\;t\;\epsilon\;J,\;u_{\nu}\,\epsilon\;\mathrm{IR}$$

where \bar{y} is a leading curve of the edge (resp. central) ruled surface $\overline{\Omega} \subseteq \overline{\varnothing}$. If we set

(7)
$$A\ddot{e}_{\nu} = e_{\nu}, \qquad 1 \leq \nu \leq k,$$

then we have the following results [1]:

$$\begin{split} Be_{\nu} &= 0 \quad , \quad 1 \leq \upsilon \leq k, \\ A \stackrel{.}{e}_{\nu} &= \dot{e}_{\nu} \\ A \tilde{a}_{k+\sigma} &= a_{k+\sigma} \quad , \quad 1 \leq \sigma \leq m, \\ \alpha_{\mu\nu} &= \bar{\alpha}_{\mu\nu} \quad , \quad \kappa_{\sigma}^{=} \ \overline{\kappa}_{\sigma} > 0, \quad 1 < \mu, \nu < k, 1 < \sigma < m \end{split}$$

(8)
$$\eta_{m+1} a_{k+m+1} = \tilde{\eta}_{m+1} A \bar{a}_{k+m+1}, \text{ and } |\eta_{m+1}| = |\tilde{\eta}_{m+1}|$$

 $\dot{y} = A \bar{y} + \lambda e,$

$$\zeta_{\nu} = \bar{\zeta}_{\nu} + \lambda \lambda_{\nu}, \qquad e = \sum_{\nu=1}^{k} \lambda_{\nu} e_{\nu}, \|e\| = 1.$$

Let a 2-ruled surface (not cylinder) ψ in E^n be given by

$$\psi(t, u) = y(t) + ue(t).$$

Then the magnitude $b = \zeta / \kappa$ is called the Blaschke invariant of ψ where ζ and κ are given by (5) and (6) [3].

Let \varnothing be a (k+1) —ruled surface. The dimension of the asymptotic bundle of \varnothing being k+m, m>0, the magnitudes

$$(9) \qquad b_i = \zeta_i / \kappa_i, \qquad 1 \le i \le m,$$

are called the principal Blaschke invariants of \varnothing and

(10)
$$B = {}^{m}\sqrt{|b_{1}...b_{m}|}$$

is called the Blaschke invariant of \varnothing [5].

In the case m=k the central ruled surfaces $\Omega \subseteq \varnothing$ degenerate in the line of striction. Thus, the Blaschke invariant b of the 2-ruled surface ψ generated by the 1-dimensional subspace $E(t)=\operatorname{Sp}\left\{e(t)\right\}\subseteq E_k(t)$ can be given by

(11)
$$\mathbf{b} = \frac{\sum_{\nu=1}^{k} \zeta_{\nu} \cos \theta_{\nu}}{\sqrt{\sum_{\mu=1}^{k} \left[\left(\sum_{\nu=1}^{k} \cos \theta_{\nu} \alpha_{\nu} \mu \right)^{2} + (\cos \theta_{\mu} \kappa_{\mu})^{2} \right]}}$$
where $\mathbf{e}(\mathbf{t}) = \sum_{\nu=1}^{k} \cos \theta_{\nu} \mathbf{e}_{\nu}(\mathbf{t}), \quad \theta_{\nu} = \text{constant}, \quad \|\mathbf{e}\| = 1. \quad [5]$

2. ON THE BLASCHKE INVARIANTS OF THE AXOIDS UNDER THE HELICAL MOTIONS OF ORDER $\,$ k in the Euclidean $\,$ n-SPACE $\,$ E^n

In this section we will discuss the relation between the Blaschke invariants of the moving and fixed axoids (m > 0) under the helical motions of order k in E^n . From (6) we obtain

$$(12) \qquad \xi_i = <\dot{y},\, e_i>, \qquad l \leq {}_i \leq k.$$

If (8) is considered together with (12) we have

(13)
$$\xi_i = \langle \dot{\hat{y}} \,, \, \dot{e}_i \rangle + \lambda \lambda_i, \qquad e = \sum\limits_{i=1}^k \lambda_i e_i.$$

Thus, From (8), (9) and (13) we get

$$b_i = \frac{\overline{\zeta_i}}{\overline{\kappa_i}} + \lambda \lambda_i / \overline{\kappa_i}$$

 \mathbf{or}

(14)
$$\mathbf{b_i} = \mathbf{\bar{b}_i} + \lambda \lambda_i / \mathbf{\bar{\kappa}_i} .$$

Hence we have the following results:

COROLLARY 1. Let $\overline{\varnothing}$ an \varnothing be the moving and fixed axoids (not cylinder) of a helical motion of order k in E^n and \bar{b}_i and b_i , $l \le i \le m$, be principal Blaschke invariants of $\overline{\varnothing}$ and \varnothing , respectively. Then \bar{b}_i the and b_i are generally different and the relation between them is given by (14).

For $\lambda=0$ which means that the motion is a pure rolling and the Blaschke invariants are \bar{b}_i and b_i agree.

COROLLARY 2. The Blaschke invariants \overline{B} of the moving axoid $\overline{\varnothing}$ and B of the fixed axoid \varnothing are generally different. If $\lambda = 0$ they agree.

Now that is the point to discuss the relation between the Blaschke invariants of the 2-ruled surfaces $\bar{\psi}$ and ψ which correspond to each other generator by generator under the helical motion of order k (k=m) such that the ruled surface ψ and the fixed axoid \varnothing have the same leading curve y and ψ is generated by the 1-dimensional subspace $E(t) = Sp \{e(t)\} \subset E_k(t)$. \bar{b} and b being the Blaschke invariants of $\bar{\psi}$ and ψ , respectively, as in [5].

(15)
$$\mathbf{b} = \frac{\sum_{\nu=1}^{k} \zeta_{\nu} \cos \theta_{\nu}}{\sqrt{\sum_{\mu=1}^{k} \left[\left(\sum_{\nu=1}^{k} \cos \theta_{\nu} \alpha_{\nu} \mu \right)^{2} + (\cos \theta_{\mu} \kappa_{\mu})^{2} \right]}}$$

where
$$e(t) \, = \, \sum\limits_{\nu=1}^k \, \cos\!\theta_\nu e_\nu, \qquad \theta_\nu = const. \qquad l \leq \upsilon \leq k.$$

and
$$\dot{e}_{\nu} = \sum_{\mu=1}^{k} \alpha_{\nu\mu} e_{\mu}, \qquad l \leq \nu, \mu \leq k$$
 [3].

for the helical motions we have

$$\begin{array}{l} <\mathbf{e},\,\mathbf{e}_{\upsilon}> = <\!\!\mathbf{A}\tilde{\mathbf{e}},\,\mathbf{A}\tilde{\mathbf{e}}_{\upsilon}> = <\!\!\tilde{\mathbf{e}},\,\tilde{\mathbf{e}}_{\upsilon}> \\ \\ <\!\!\dot{\mathbf{e}}_{\upsilon},\,\mathbf{e}_{\mu}> = <\!\!\mathbf{A}\dot{\tilde{\mathbf{e}}}_{\upsilon},\,\mathbf{A}\tilde{\mathbf{e}}_{\mu}> = <\!\!\tilde{\mathbf{e}}_{\upsilon},\,\tilde{\mathbf{e}}_{\mu}>. \end{array}$$

Joining (8), (15) and (16) we get

(17)
$$\mathbf{b} = \mathbf{\bar{b}} + \frac{\sum\limits_{\upsilon=1}^{k} \lambda \lambda_{\upsilon} \cos \bar{\theta}_{\upsilon}}{\sqrt{\sum\limits_{\mu=1}^{k} \left[\left(\sum\limits_{\upsilon=1}^{k} \cos \theta_{\upsilon} \alpha_{\upsilon} \mu \right)^{2} + (\cos \theta_{\mu} \kappa_{\mu})^{2} \right]}}.$$

If we take $e = e_i$, $1 \le i \le m$ we obtain (14) from (17). Thus (14) can be considered as a generalization of (17).

COROLLARY 3. The Blaschke invariants \bar{b} of $\bar{\psi}$ and b of ψ are generally different for the helical motions. For $\lambda=0$ (pure rolling) \bar{b} and b agree. If $\bar{\varnothing}$ and \varnothing are 2- dimensional axoids then $\bar{\psi}$ and ψ coincide with $\bar{\varnothing}$ and \varnothing , respectively. In this case, since $\nu=\mu=1,\cos\theta_1=1,\ \alpha_{11}=0$ we obtain $b=\bar{b}+\lambda/\bar{K}$.

This relation can be obtained from (14) since $\lambda_1 = 1$.

ÖZET:

Bu çalışmada E^n , n-boyutlu Öklid uzayında k-yıncı mertebeden helisel hareketler altında meydana gelen \varnothing ve \varnothing hareketli ve sabit aksoidlerinin Blaschke invaryantları arasındaki ilişkiler incelendi. Ayrıca bu hareket altında birbirlerine karşılık gelen $\overline{\psi} \subset \varnothing$ ve $\psi \subset \varnothing$ 2-regle yüzey çiftlerinin Blaschke invaryantları arasında bir bağıntı bulundu.

REFERENCES

- FRANK, H. "On Kinematics of the n-dimensional Euclidean space" Contribution to Geometry, Proceedings of the Geometry Symposium in Siegen (1978).
- [2] FRANK, H. GIERING, O. "Veralgemeinerte Regelflachen" Math. 2. 150 (1976), 261-271.
- [3] FRANK, H. GIERING, O. "Verallgemeinerte Regelflachen im Grassen II" Journal of Geo. vol. 23, 1984.
- [4] MÜLLER, H.R. "Zur Bewegungsgeometrie in Raumen höhere Dimension" Monatsh. Math. 70 (1966), 47-57.
- [5] KELEŞ, S. ASLANER, R. "Eⁿ de (k+1)-regle yüzeylerin Blaschke invaryantları üzerine (to appear).