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ABSTRACT

In this paper the relations between the invariants of the moving axoid ¢ and the fixed
axoid ¢ under the helical motions of order k in EP are discussed. Moreover we have the state-
tement (17) for the paix of the 2-ruled surfaces f* < & and ' < @ which correspond to each
other under the helical motion of order k in E™.

1. HELICAL MOTIONS OF ORDER k
A motion of E is described in matrix notation by
(1) x = A% + ¢, AAT = ATA =1
where AT is the transposed of the orthogonal matrix A and
A:J > O (n), c:j -~ IR"

are functions of differentiability class C'(xr > 3) on a real interval J.
Considering a motion as a movement of the space E against the space E
the co-ordinate vector X in (1) describes a point of so-called moving space
E and x a point of the so-called fixed space E.

Let % be fixed point in E then (1) defines a parametrized curve in
E which is calied the trajectory curve of x under the motion. From (1)
by differctiating with respect te t we get
(2) = B(x—¢)+ ¢ B = AAT
where B + BT == O, since the matrix A is orthogonal. Therefore in the
case of even dimension it is possible that the determinant |B | may not

Vanish. If | B(t) | 720 for all t e J, we get exactly one solution P(t)
of the equation

(3) B (t) (P—e (1)) + & =

The point P (t) is called the pole of the motion at the instant t which
is the center of the instantancous rotation of the motion for t e J. If
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|B| dose’'nt vanish on J, by cosidering the regularity condition of the
motion we get a differentiable curve P:J — E of poles in the fixed space
E, called the fixed pole curve. By (1) there is uniquely determined a
moving pole curve £:J -+ E from the fixed pole curve point to point

on J.

H.R. Miiller proved in [4]; under the motions the fixed pole curve
and the moving pole curve are rolling on each other without sliding. Me-
rely in the case n == 2 the motion is determined by the pair of rolling
pole curves.

In all other cases (that means B! = 0), especially for odd n,
we obtain by the rules of Linear Algebra: that for every t e J there exists
a unit vector e (t) ¢ kernB (t) and 2(t) € R so that the solutions y of
the equation

@) B1)(y< (1) - (1) = n(v)e()

fill a uniquely determined linear subspace Ex(t) < E® with the dimensi-
onk = n — rankB. Ey (t) is the axis of the instantaneous screw (A 3% 0)
of the motion or the axis of the instantaneous rotation (x = 0) and will
be called the instantaneous axis of the motion in t € J [1].

If |B| = 0 on the whole interval J under the regularity conditions
we obtain a generalized ruled surface of dimension k + 1 in the fixed
space E genecrated by the instantaneous axes Ey (t), t € J, which we
call the fixed axoid & of the motion. The fixed axoid @ determines the
moving axoid § in the moving space E generator to generator by (1).
‘o and @ are mapped upon each other by the same values of parameter.
In this second case Miiller proved in [4]: The axoids 7, @ of a motion
in E" touch each other along every common pair E(t) « o, E (t) =« &
for all t € J by rolling and sliding upon each other under the motion.
Such a motion is called an (instantaneous) helical motion of order k
in E" [1]. A helical motion of order k is a pure rolling for ) = 0.

For the analytical represetation of an axoid @ we choose a leading
curve y in the central (resp. edge) ruled surface ) © @ transversal to
the generators. In [2] it is shown that there exists a distinguished mo-
ving orthonormal frame (ONF) {ey, e,, ... .e,} of & with the properties:

(i) Hep ers s el is an ONF of the E (1),
(ii) {emJ__l, €mip, «- 5 € 18 an ONF of the central space.

z%~ ™ (resp. the edge space K¥-m < E_ (1))
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k
(i) & = X dgy €y Ky A o, 1 <o <m,
v=1
m
em.p = _Z (myp)i€is 1 <oy < k—m,
=
(5) with Rg > 0, Oy = — Cyls C'-(m+p) (m+y) = (}

(iv) {eqs vy €k, Bxiqs on s ax. m! is an ONF.

A leading curve y of an axoid o is a leading curve of the edge
(resp. central) ruled surface Q< & too iff its tangent vector has the form

A

6  y=

v .
Svey = Timyy Agimeg
v

If

for %y # 0, amy, is a unit vector well defined up to the sign
with the property that {e,, ..., e, ay 1 - - ams aymiq) 1S an ONF
of the tangent bundle of . One shows: %y, i (t) = 0 in te J iff the
generator E_(t) © ¢ contain the edge space K™ (t).

Let 7 and o be the corresponding axoids of the given helical mo-
tion of order k in E™ and {&, ... .5, } is a principal ONF of the moving
axoid &. Then the equations (iii) hold for & with barred coefficients,
& has the paramecter representation on the interval J by

P (touy, ) = (1) -,551 wi, (U, ted, uye IR
where 7 is a leading curve of the edge (resp. central) ruled surface () < 7.
If we set
(1) Az, = ey, 1 <v <k,
then we have the following results [1]:
Be, =0 , 1<vuv <k,
Agy = &

Aé—k»{—c = dki5 1l <6 <m,

= Y

dhy = Ay 5 K K> 0, 1 <uuv<kl<o<m

(8) Nmi18k4myy = Fmal Aék«;vm,yla and rj”f)mﬂ = \ﬁm~1’
v = Ay - Re,

— k .
O = L+ M e = X gy, | OF = 1.
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Let a 2-ruled surface (not cylinder) ¢ in E™ be given by
v (t, u) =y {t) -+ ue (t).
Then the magnitude b = 7/ x is called the Blaschke invariant of { where
7 and K are given by (3) and (6) [3]. '
Let o be a (k+1) —vuled surface. The dimension of the asympto-
tic bundle of 7 being k + m, m > 0, the magnitudes
9) by = G/ &, I <1< m,
are called the principai Blaschke invariants of = and
10 BT
is called the Blaschke invariant of = [5].

In the case m — k the central ruled surfaces () < @ degenerate
in the line of striction. Thus, the Blaschke invariant b of the 2-ruled
surface ¢ generated by the l-dimensional subspace E(t) = Sp {e(t)} <
Ek(t) can be given by

k
2 ¥, cosh,
v |
1) b= —
[ 3
\/ Z [ (2 coshyeyp)? 4 (cosbuxy)?]
0l vl
k
where e(t) = X cosOyey i), 0, = constant, e} =1 5]

Ny

P~

2. ON THE BLASCHKE INVARIANTS OF THE AXOIDS UNDER
THE HELICAL MOTIONS OF ORDER k IN THE EUCLIDEAN
n-SPACE Kov

In this section we will discuss the relation between the Blaschke
invariants of the moving and f{ixed axoids (m > 0) under the helical
motions of order k in En. From (6) we obtain

(12) Z.i = < 577 € >, 1 <i < k.

If (8) is considered together with (12) we have
(]3) ‘Zl w <}"y s €1 -k A, e = X €.

Thus, From (8}, (9) and (13) we get
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by = 2L 1w/
Kj

or
(14) by = b; + M/ K .
Hence we have the following results:

COROLLARY 1. Let 5 an @ be the moving and {ixed axeids (not cy-
linder) of a helical motion of order k in ET and b; and b;,1 <<i << m, be
principal Blaschke invariants of 5 and @, respectively. Then b; the and
b; are generally different and the relation between them is given by (14).

For ) = 0 which means that the mction is a pure rolling and the
Blaschke invariants are b; and by agree.

COROLLARY 2. The Blaschke invariants § of the moving axoid
and B of the fixed axoid @ are generally different. If & == 0 they agree.

Now that is the point to discuss the relation between the Blaschke
invariants of the 2-ruled surfaces § and ¢ which correspond to each
other generator by generator under the helical motion of order k (k==m)
such that the ruled surface { and the fixed axoid @ have the same le-
ading curve y and { is generated by the l-dimensional subspace E(t) ==
Sp {e(t)} < Ei(t). b and b being the Blaschke invariants of ¢ and {,
respectively, as in [3].

k
L ¢ycos0,
v=1
(15) b =
k k
Z [(Z cosOyoyu)2 -+ (cosbpkp)?]
=l v=1
k
where e(t) = X cosle,, 0y = const. l<v<k
v=1
k
and é\) == Z Ay ey,, 1 g V,(.L S k [3].
w=1

for the helical motions we have

<e, ey = <A@, Ag,>> = <&, &>
(16)

Ty, p > == <CAgy, Af > = <T@y, Bu>.
Joining (8), (15) and (16) we get
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2 Wk, c0sf,
‘J:I

(1) b=§ +

k
/ Z

k
N [ (X cosbyeyu)2 4 (cosBuxy)2?]
u=li v=1
If we take e = ej, ]| <i < m we obtain (14) from (17). Thus (14) can

be considered as a generalization of (17).

COROLLARY 3. The Blaschke invariants p, of § and b of { are generally
different for the helical motions. For A = 0 (pure rolling) {; and b agree.
If 7 and @ are 2- dimensional axoids then J and ¢ coincide with Z and
&, respectively. In this case, since v = w=1,co80; =1, ¢;; = 0 we
obtain b = { - 2/K.

This relation can be obtained from (14) since 3, = 1.

OZET:

Bu calismada En, n-boyutlu Oklid uzaymda k-ymer mertebeden
helisel hareketler altimda meydana gelen & ve o hareketli ve sabit
aksoidlerinin Blaschke invaryanilan arasindaki iliskiler incelendi. Ay-
rica bu hareket altinda birbirlerine karsihk gelen { < @ ve ¢ < o 2-
regle ylizey ciftlerinin Blaschke invaryantlar arasinda bir bagimt1 bu-
lundu.
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