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ABSTRACT

In this paper, manifolds with negative curvature is discussed, and it is proved, for these
manifolds, that the intersection of two compact totally geodesic submanifolds V and W of M
does not necessarily occure. This result, is also, established for Kihler manifolds. Finally, the
existence of a fixed point is discussed.

1- INTRODUCTION

Let M be a complete n dimensional Riemannian manifold, V and
W are submanifolds of dimension r and s respectively, and 7(0) = pe V
to 7(t) = Q € W striking V and W orthogonally; t represents arc length
along. . Suppose x; is a unit vector field that is displaced parallel along
7 and is tangent to V and W at p and q respectively and (if x exists)
is thus orthogonal to 7. Finally Ty is the unit tangent vector to .

We construct a “variation” of the geodesic T as follows. We pass
a small “ribbon’" of surface through © that is tangent to X at <(t) for
all t such that 0 < t < .. This ribbon cuts V and W in two curves.
We now pass curve segments on the ribbon tangent to Xy at =(t), the
curves varying smoothly from V to W. The ribbon is chosen so “thin”
that two segments intersect. On each segment we use the directed arc
length o from © as parameter and we may suppose that = < « = <.
Each point on the ribbon carries two coordinates (t, o) and we have two
systems of coordinate curves t = constant and & = constant (the ori-
ginal geodesic is of course « = 0). We have two coordinate vector fields

T = ;—t and X = ;%— defined on the ribbon with T = T; at (t, 0)

and X == X at this same point.
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We recall some facts and notations of Riemannian geometry. We
let g (Y, Z) denote the Riemannian scalar product of two vectors Y and
Zs if (x4, ..., X3) are local coordinates for M, then g (Y, Z) = Z g5 Y'ZIi.

i,

Levi-Civita connection of a function f with respect to a vector Y,
denoted by T/ y(f), is the directional derivative of f in the direction Y.
If z is a vector field, the covariant derivative of z with respect to Y is
again a vector, written 57 yz. If Y is also a vector field, the Lie bracket
of Y and Z is given by

[Y,Z] =YZ — ZY = \yvZ — V/ zY.
In particular, if Y and Z are coordinate vectors, then
[Y,Z] =0 = VvZ — v Y.
Hence in the case of our particular vectors we have
VxT=vrX
where X = X is a unit vector field that is displaced parallel along «
and T = T, is the unit tangent vector to ~.
Next we have the Ricci operator identity
VyVz— vy =R(Y,Z) + Vi

where R (Y, Z) is, for each pair (Y, Z), a linear transformation on
tangent vectors. R (Y, Z) is constructed from the Riemann curvature
tensor and in terms of coordinates the transformation of vectors

U-R (Y,Z) U is given by

YU Lo (X — ROYRZIU)
i ox! i ki jki oxt 7
R (Y, Z) is skew symmetric; R (Y, Z) = — R (Y, Z). In our case the

Ricei identity becomes

VxVr—VrVx=R(XT).

The Riemannian sectional curvature corresponding to the 2- plane
T ~ X is given by

K(T,X) = g (R(X,T)T, X)
~ ¢ (R(X,T) X, T).

Finally, we recall that the scalar product is “covariant constant”, i.e.,
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0

- g(YVXY7 Z) _i_ g(Yﬁ VXZ)'
The length of the curve « = constant is given by

L

L= [gTmd.

Lemma. The first and second variations of arc length are

, dL
L X (0) = da [0 =0

" d2L, ; :
L'x(0) = == | =8(Vx X.Tjo—g(Vx X, Dr— | K (T.X) dt.
: 0

For a proof see [27).
P

2—- Real manifolds with negative curvature: A submanifold V of
Riemannian M is totally geodesic if any geodesic of M that is tangent
to V at a point lies wholly in V. This implies that every geodesic of V
(in the naturally induced metric from M) is at the same time a geodesic

of M.

Theorem 1. Let M be a complete connected manifold with negative
Riemannian sectional curvature. If V and W are compact totally geo-
desic submanifolds, then V and W have a non-intersection.

Proof. We assume that V and W are any two compact submanifelds.
We suppose they intersect. Then there is a largest geodesic (t), say of
length + > 0, from V to W and let P and Q be the points (0) and (1)
respectively. A variation X for which Lx”’(0) >> 0, hence we arrive at
a contradiction and < is minimizing. '

So far V and W were arbitrary. To evaluate the end term in the
second variation we use the fact that V and W are totally geodesic. The
variation vector X is given. For the construction of the “ribbon’, de-
fined in, [5] we can choose geodesics of M through each X¢; there is a
unit vector X, tangent to 'V at P and since V is totally geodesic through
X will lie entirely in W. Thus the curves & = constant will have their
endpoints on V and W as required for the variation. But since X, and
X are tangent vectors to geodesics of M we have 7 x X = 0 at P and
Q. Hence the second variation formula is
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L

L'x(0) = — [ K (T, X) dv >0,

and the proof is complete.

3— Kihler manifolds with negative curvature: A Kihler manifold M is
a special type of Riemannian manifold whose underlying space is a comp-
lex manifold. There js a linear transformation J on each tangent space
that sends any vector Y into a vector JY orthogonal to Y {J represents
multiplication by (-1)2/1). J has the properties J2 = — identity and
g{JY, JZ) = g (Y, Z) for all vectors Y and Z (the last property states
that g is a “Hermitian” metric). From J we construct the Kahler exteri-

or 2- form w, defined by
o (Y, Z2) =g (JY, 7).

© is exterior because o (Y, Z) = — o (Z, Y). All that has been said so
far holds for any Hermitian manifold. The further condition defining
a Kihler manifold can be stated as requiring that @ be covariant cons-
tant, 7y w = 0 for all vectors u; i.e., for any vector fields Y and Z we
have

Tew (Y,2) =6 (Ve Y, Z) - o (Y, 7 Z)

Since g is also covariant constant we conclude that J is also, i.e., we have

the operator equation
. *
VuUJzJOKJUe ()
for any vector u.

A linear subspace V of the tangent space to a complex manifold
at a point is said to be complex if it is invariant under J, J : V - V.
A submanifold is complex analytic if its tangent space at each point

is complex.

Theorem 2. Let My be a complete, connected Kihler manifold with
negative sectional curvature. If V and W are compact complex analytic
submanifolds, then V and W we have nonintersect.

Proof. The proof is again by contradiction starting exactly as in
Theorem 1. We again arrive at a variation vector Xy, parallel displaced
along 7 and tangent to V and W at P and Q respectively. Now, however,
we have additional information. Since V and W are complex analytic
the vector field J (X4) is tangent to Vand W at P and Q respectively.
Further, from (*) we have
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sinee X is parallel displaced. Thus J (X;) is also parallel displaced and
gives the same type of variation vector as X;. We claim, that the second
variation corresponding to at least one of the fields X or J Xy is strictly
positive agaiu giving a contradiction.

To prove our claim we suppose that

We will be finished if we can show

g (Vix JX, T)q — g (Vyx IX, T)r > 0.

Since every second fundamental form of a complex analytic submanifold
of a Kahler manifold is skew hermitian; i.e.,

g(VixIX, Tp = —g(Vx X, T)p for V,
g (Vix JX, T)q = — g (Vx X, T)q for W.
The proof of this is simple and we include it here for completeness.

Let C be a complex analytic curve (real dimension 2) on V tangent
to Xy and JXg at P. Then X can be extended to a tangent vector field
X on C and of course JX is an extension of JX,. Since X and JX are
tangent vector fields to C the lie bracket [JX, X ] is again a vector field
tangent to C, and thus orthogonal to T at P. Using [JX, X] =
Vix X — v xJX, (4) and J2 = — identity we have at P,

g(Vix JIX,T) = g(J vyx X, T)
=g (JJX,X],T) —g(vx X, T).

Since [JX, X is tangent to C, so is J (JX, X ] and so the first term va-~
nishes and the result follows.

4- Correspondences: A (holomorphic) correspondence of a complex
manifold C, with itself is a complex analytic n-dimensional submani-

fold of C, x Cy.
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A holomorphic map f: C, — C, gives rise to a correspondence,
the graph G (f) of f; G (f) = {(p, f (p)) : p € Cn}. G(f) is of course a
special type of correspondence since f is single valued. Let A = {(p, p)
: p € Gy} be the diagonal of C; x Cy. A correspondence will be said to
have a fixed point if G (f) and A are intersects the diagonal.

Proposition 1. Every (holomorphic) correspondence of a conrected com-
pact Kiihler manifold C, with negative curvature has a non fixed point.
Proof. The holomorphic is a complex analytic submanifold Vy, of Cy; X
Cy. The same is true for the diagonal /. We need only show that Vj,
and the diagonal A\ is not intersect, and this follows from Theorem 2.
The proof is complete.
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