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ABSTRACT

The finite and the limiting behavior of the power of a real nonsymimetric matrix with

distinct eigenvalues is analyzed through its spectral decomposition. Analytical results for all

special cases of practical intercst are obtained, and numerical examples are provided. The re-

sults are valid al<o for nonsymmetric matrices with repeated eigenvalues provided th
linearly independent ecigenvectors exists.

INTRODUCTION

t a set of

Powers of matrices occur in a variety of problems, especially those

4
of a multivariate and recursive nature. In statistics, for example, tran-

sition matrices in Markov chain analysis, and covariance matrices in

multivariate time series analysis provide examples involving
of matrices. The limiting behavior of the power of a matrix is ¢

POwWers
ften of

considerable interest as it relates to the long term behavior of the pro-

cess defined by the matrix. We will consider here positive integer
of real matrices and their limits as the power tends to infinity.

powers

The power of a nonsymmetric matrix with distinet eigenvalpes can

be expressed in terms of the eigenvalues and cigenvectors of the
through its spectral decomposition, which proves to be very con
for the analysis. Spectral decompeosition can be used also for n
metric matrices with repeated cigenvalues provided that a set
arly independent eigenvectors exists. If this condition is not sa
which is usually the case, then ene can use the Jordan caneical fg
but that requires an analytical treatment quite diffevent and mor
licated thar the spectral decomposition approach. We intend t
that case in a future study. The analvsis here will Le restricted

matrix
renient
onSy I~
of Hne-
tisfied,
rm [3 ],
comp-
o treat
{0 non-

symmetric matrices with distinct eigenvalues, and repeated eigenvalues
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will be allowed only if a sct of linearly independent eigenvectors exists.
Powers of symmetric matrices, with or without distinct eigenvalues,
can be analyzed as a special case with considerable simplifications due
to the nonexistence of complex eigenvalues and the existence of real
orthonormal cigenvectors.

CONVERGENCE OF A SEQUENCE OF MATRICES

Let {A®} denote a general sequence of m X n matrices, A1),
A@ .., where a;;®) is the (ij)-th element of A®). The sequence is said
to converge to the m X »n matrix A = (ay), or to have the limit A, if
for each i and j, the sequence of scalars {a;;®} converges to ajj. This
is denoted as Hm A® = A or {A®} > A. Otherwise, the sequence

ko

is said to diverge. In some cases, divergence may arise from one or more

of the component scalar sequences diverging to + o or — co. This
case of divergence to infinity is denoted as lim A® = oo or {A®)}
k—x

-» co. In other cases, divergence may arise from the matrix sequence
oscillating hetween various limiting matrices. Due to its practical sig-
nificance, this case of divergence by oscillation will receive considerable
attention in our analysis. Ancther from of divergence is the continuous
change of the matrix sequence without oscillation and without diver-
ging to iofinity. This mode of divergence will be referred to here as “di-

vergence by drifting”.

Since we will deal with complex matrices, some definitions for a
sequence of complex scalars will be given heve. Let {z;} denote a sequ-
where zy = ay -+ i bx. The sequen-
ce is said to converge to 7z == a - i b iff each sequence of real scalars

ence of complex numbers 2y, 2, ,...,
{ax} and {bi} converges to the real numbers a and b, respectively. This

is denoted as lim =z, = z or {zx} — z. Otherwise, the sequence is
ko

said te diverge. The sequence is said to diverge to infinity, denoted as
L 2 = o0 or {zk} — oo, iff the sequence {|zy |} diverges to infinity,

figetes]

where (7| = (a2 - b2 )2 is the absolute value of z.

An important theorem for the convergence of matrix sequences,

which 15 relevant te our analysis, follows:

THEOREM 1 If the sequence {A®} converges to A, then the sequence
{PA®Q} converges to PAQ [1].
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In this study we consider the special case of the sequence of
matrices {AK}, where AKX, k = 1,2, ..., is the k-th power of |
important theorems for the convergence of such matrix sequen
low:

THEOREM 2 {Ak} - 0 iff the eigenvalues of A are less than
absolute value [I1].

nxn
A. Two
ces fol-

one in

THEOREM 3 if B = PAP-1, then {Bk} converges iff {AX} converges.

Theorem 3 easily follows from Theovem 1 by first noting tha

PAKP-1 and Ak = P-i BKP,

POWERS OF NONSYMMETRIC MATRICES
SPECTRAL DECOMPOSITION

t Bx =

Let A be an n X n real nonsymmetric matrix with eigenvalues

Al 5ees An and a set of corresponding n X 1 eigenvectors py ..., P
of the eigenvalues may be complex, and complex eigenvalues

h. Some
ccur in

conjugate pairs. For a real eigenvalue, a real eigenvector always exists.

Eigenvectors corresponding to conjugate pairs of eigenvalues ¢
be expressed as conjugate pairs, elementwise. Assume that the

an also
igenva-

lues are all distinct. It can be shown in that case that the eigenvectors

are linearly independent.
Let
A = Diag. (3 ..., An)

P = (p) s o)

(1)
(2)

It follows from the linear indepence of p; ,..., pn that P is nonsingular.

Let

e ()

q'n

where ¢’; is the i-th row of P~1 and “’”’ denotes the transpose. It can be

shown that the matrix A can be expressed as

A= PAPI

n

v‘ ,

= 2 Mpigi
T==]

(3
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which is known as the spectral decomposition of A [3]. This simply
follows from AP == PA, which is the matrix representation of Ap; =
2pi, 1 = 1 ,..., 0. The k-th power of A can be obtained by multiplying
A (3) by itself k times, giving

Ak — PAkK P"i’ k = ;1. 2,...
- (4)
= X i
i
where
AKX = Diag. (05 ,...s 20k), k=12, (5)

is the k-th power of A. It shouid be noted that the matrices A, AX, P
and P~1 may be complex but A and AX are real. For a nonsymmetric
matrix with rvepeated eigenvalues, a set of linearly independent eigen-
vectors, and hence P~1, may or may not exist. If it exists, then the spect-
ral decomposition of A as given by (3) is applicable and all the results
in the paper are valid, unless otherwise stated.

When P is a complex matrix, the matrix P~i may be difficult to
obtain through the usual inverse operations. There is an easier way of
obtaining P~!. The matrix A’ kas the same eigenvalues as A, but not
necessarily the same eigenvecters. Let sq ..., sy be a set of n X 1 eigen-
vecters of A’ corresponding to the cigenvalues %; ,..., 2. These are also
called the left eigenvectors of A, as A’ s; == Jsi, by transpose, is equi-
valent to s’y A = J; s';, which is different from Ap; == % pi satisfied
by the (right) eigenvectors py ,..., py of A. If the eigenvalues of A are
all distinct, it can be shown that s, ..., s, are linearly independent, p's;

These conditions may or may pot be satistfied by a nonsymmetric mat-
rix with repeated eigenvalues. Let 8 = (s;....sy) and D == Diag.
(dy 5.y dp). It follows from the above results that S and D are nonsingu-
lar and that P'S = 8 P = D, from which we obtain P-1 — D-iS".
This provides an easy way of obtaining P! from the eigenvectors of

the A and A’ matrices.

BEHAVIOR OF COMPLYX TICENVALUES

it follow from (4) that the dependence of A% on k is only through
2i¥, the powers of the cigenvalues of A. For a complex eigenvalue ) =

@ -+ bi, the conjugate of A is % == a — bi and the absolute value of
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andnis [A| = 1! == (a2 L h2)!/2. By the polar representation of comp-

t

lex numbers,
A= || {cosh -+ i sinB)
A= |A{ {cosh — i sind)

where cos = a/ || and sin) = b/ |. The powers of % and A can then
be expressed as

W == K (coskf 4- 1 sink®), k=1 2..
(6)
2= [k (coskD — i sink8), k =1, 2,..
where L[k = k| = QK|

It follows from (6) that

lim 25 = lim 2k = 0, i<t (7)
k= k-
lim 2% = lm A% = oo, ] >t (8)
k=0 k-0
Since || = [3k| = [k it follows that kim [AX|= lim |7k |
k- koo

= oo for |x| > 1. As discussed previously for complex scalar sequences,
this is actually what is being meant by (8) for complex . Obviously,
(7) and (8) are also valid for real A. For ) = 0, (7) is satisfied for all k =
1, 2,..., without a need for a limit. For [A| = 1,

o= cosl + i sinf

A = cos® — i sin 9)
2E — coskf 4 i sinkf, k=1,2,..
3 = coskl — i sink®, k=1,2,..

Due to periodicity of sine and cosine functions, 2X and AX in this case
may exhibit periodic behavior under certain conditions. If these con-

ditions are not satisfied, then 3¥ and ¥ change continuously with k.
We will now investigate in more detail the behavior of 2K and A& when

=L

Since sine and cosine functions have a period of 27, cos (0 + 27m)
== cosb and sin (0 -+ 27wm) = sin0 for m = 1, 2,..., where 0 is in radians,
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which can be restricted to the range 0 << 6 < 2x. It then follows from
(9) that 3¥ = 7 and 3k =% for k = 1 if there exist some integers k > 2
such that k0 = § 4+ 2mm or k = 1 + (2= / 6)m for some positive integers
m. In that case, 2K and ¥ will have a period of 1 = (27 /6) my, where
my is the smallest positive integer to make ¢ an integer. That is, Ak = )
and 3¥ == A for k=1, 1 - 1, 1 ++ 21,... . Note that ¢ > myg, since 27/
6 > 1. Since (27 /0) == (1] my), a period ¢ will exist iff 2% /0 is a rati-
onal number. Therefore a period  for 32X and 2k may or may not exist
and even if it exists it may be very large.

Another property of sine and cosine functions is that they change
sign with a period of =, that is, in addition to having a period of 2% as
discussed above, cost (6 + nn) = —cos0 and sin (6 4+ wn) == —sinf
for n = 1, 3,... . It then follows from (9) that 3¥ = —3 and Y ——Y
for some k if there exist some positive integers k such that kb = 6 +
o or k = 1 4 (w/0) n for some positive odd integers n. In that case.
2k and 2k will change sign with a peried of 1= = (7] 0) ng, where ng is
the smallest positive odd integer to make v~ an integer. That is, 3K =
—nand 3K = —pfork =1+ -, 1 + 3.,... . Note that may or
may not exist.

If 3k and 2k change sign with a period of 1~ then they should repe-
at themselves with a period of + = 21~. Therefore, if .~ exists, then
exists and « = 2™, which is even. Hence, if 1 does not exist or is odd,
then 1~ does not exist. It can be shown that if . is even, then 1~ exists
(and 1= = 1/ 2). To show this, note that (mg/ 1) = (8/ 2n), where mg
is the smallest positive integer to make ¢ an integer. If mg and © are both
even for a given 0, then they can both be decreased by division by at
least two and therefore the minimality requirement on mg is not satis-
fied. Thevefore when 1 is even, my should be odd, and (1/2) = (=] 0)mg
satisfies the definition of = = (r/0) ng (where ny is odd) with ny =
my. It can therefore be concluded that 1= exists iff 1 exists and is even.

If .~ exists, then the sequence {A¥} contains only 1~ distinct elements
(disregarding sign) , 22 ,..., 2*~ which change sign with a peried i~
If v~ does not exist, then {}K} contains . distinet elements, A, A2 ,..., At
which repeat themselves with a period . without changing sign.

As previcusly mentioned, complex eigenvalues occur in conjugate

pairs. It should be noted from the above discussion that 2¥ and 2= have
the same . and v~ (if they exist) and therefore they exhibit the same
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periodic behavior when periodicity exists. If i does not exist, then it
follows from (9) that AX and ¥ change continuously with k. In our pre-
sentation, when we refer to the existence of a complex eigenvalue %,
it should be understood that we are actually referring to the existence

of a pair of complex eigenvalues 2; and 7.

The only real numbers which satisfy the condition | =1 are
A=Tland = —1.Forx=—= 1,0 = 2% my= 1,1 = 1 and v does not
exist, Forn = —1,0 = n,myg = ny = 1,1 = 2 and 1~ = 1. Fora = 1,

A= 1fork=1,2,... Among all 2 with 3| =1, A = 1 is the only
one with a fixed fpower. It can ecasily be verified that . == 1 only for

A= 1and v~ = 1 only for A = —1. Therefore, when [1| = 1, the se-
quence ¥} is fixed only for 2 = 1, and the sequences {¥} and e

diverge, either by oscillation or by drifting, when X s 1.

As some examples of complex eigenvalues with unit absolute va-
lues, consider A == i, A== —1i and » = (—1 -+ i\/ 3)/2. For A =i,
0=m/2, my=mnyg=1, =4 and ~ = 2. In this case, 2k =1 for
k=1,5,9,.. 3 = —i for k= 3,7, 11, ..., and the sequence [}
contains 2 (== 1) distinct elements A == i and A2 = — 1 which change
sign with period 2. That is, the sequence {3X} expands as i, -1, -i, 1, i,
-1 ,..., which can easily be verified. For » = —,0 = 3 7/ 2, my = ny =
3, v = 4 and v = 2. Note that A = —i, being the conjugate of A = i,
has the same . and = values as A = i. For A = (-1 -1i4/3)/2,0 =
2r/3, my =1, + = 3 and ¢~ does not exist. In this case, Ak = ) for
k =1, 4,7, ..., and the sequence {}¥} contains 3 (=1) distinct elements
2, 22 and 23 which repeat themselves with period 3 without changing
sign. That is, the sequence {3k} expands as %, A2, 23, A, A2, 23-,..., which
can easily be verified.

If there are two or more eigenvalues 3; (which occur together with
their conjugates Xl) with |%] == 1 and with individual periods ¢ and
1y~ for their powers 3;¥, their simultaneous periods vz and 1z~ (if exist)
are of interest, where ig is the period at which all 2k will repeat themsel-
ves and 15~ is the period at which all ;¥ will change sign. That is, Ak =
dforallifork = 1,1 4 15, 1 4 214, and 25K = —2; for all i for k =
1+ 15, 1+ 3 ... If y exists for each 2;¥, then iy also exists and
it can be defined as the smallest integer for which tg/ 1; is an integer
for all i. Note that g = II1; can always staisfy this condition if a smaller
1g does not exist. For example, if 1; = 2, 1, = 3 and 13 = 6, then 1z =6.
If iy =3, 1, = 4 and 3 = 5, then 1z = 60. If 1~ exists for each XK,
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then 1y~ may or may not exist. The period 1, exists iff there exist odd
g Yy Yy P g
integers nj such that nji; = 1, for all i. This follows from the fact that

for a 24K with period «—, 3k == —; for k = 1 4 nj y~ where nj = 1,

3, ... . If ;s consist of both even and odd integers, than 1~ cannot

exist because n; 1~ is odd for an odd u— and 1n; 1~ 18 even for an even

tj~ and therefore n; 1~ # ny ;. For example, if 1y~ = 2 and ;- = 3,
then 1~ does not exist because the equality 2n; = 3n, cannot be satis-

fied by any odd integers n; and n,. If ;s are all odd integers, then 1~
always exists and it can be defined as the smallest integer for which
g~/ i is an odd iuteger for all i. This follows from the requirement
n; 47 == iy for odd u; and for sl i. Note that g~ = Huy~ can always
satisfy this condition if o smaller g~ does not exist. For example, if
o =3, T =>5and 137 == 9, then 1g- = 45. If y,— = 3, 1,~ = 5 and
137 == 7, then 1y~ = 165. If ~'s are all even integers, then iz~ may
or may not exist. For example, if ;= = 4 and 1,~ = 6, then 1z~ does
not exist because the equality 4n, = 6n,, or 2ny == 3n,, cannot be
satisfied by any odd integers n; and n,. If =2 and 1,~ = 6,
then 1;~ = 6 because the equality 2n, = 6n,, or n; = 3n,, can be
satisfied by n; = 3 and n, = 1. Tt is again true that if 1~ exists,
then ig exists and 1y == 21,7, which is even. Henee, if 1, does not exist

or is odd, then 15~ does not exist. Even when 1gis even, 1~ may not exist.
For example, for 1} = 8 and 1, = 12, ;= = 4, 1, = 6, g = 24 but
tg~ deos not exist. As a concrete example, consider Ap =1 with | = 4
and y~ = 2, and A, = (—1 -+ i4/3)/2 with 1, = 3 and 1,~ does not
exist. Here 15 = 12 and 1;~ does not exist. In this case, Ak = 2; and
Rk = 1, simultaneously for k == 1, 13, 25, ... .

SOME GENERALIZATIONS

Using (3), (4), (5) and the previous discussion of the behavior of
24K, some general statements can be made regarding the convergence or
divergence of the sequence (Ak}. It follows from (3) and Theorem 3
that {Ak} converges iff {AX} converges. From (5) and (7), Ak} conver-
ges ff ] <1, and 3y = 1 being allowed since it has a fixed power.
It also follows from Theorem 2 that {A¥Y 0 iff 33| << 1. Therefore,
{AK} — B, where B is a nonzero matrix, iff A7 << 1, and 3 = 1 for
at least one 2;. Although we say “at least one’” here, note that in dealing
with nonsymmetric matrices with distinet eigenvalues there cannot be
more than one unit eigenvalue. However, as mentioned before, our re-
sults are also valid for the case of repeated eigenvalues provided that a
set of linearly independent eigenvectors exists. Therefore in our presen-
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tation we will reflect this possibility not to lose generality. From (4),
{Ak} = 0 only if {AK}~ oo, Since Ak = P-1 AKP, {Ak} > o0 omly if
{AXY > o, Therefore {Ak} > oo iff {Ak} > oo. It follows in the same
same way that {Ak} diverges by oscillation or by drifting iff {Ak} be-
haves so. From (8), {Ak} - oo, and hence {AK} — oo, Hff [A;| > 1 for
at least one ;. The sequence {AX} diverges by oscillation, and so does
{Ak} iff 3| << 1 with the equality holding for at least one ) other
than 2; = 1 and there exists a simultaneous period 1 for the powers
of eigenvalues with unit absolute values. If i, exists, a simultaneous
period for change of sign, 1,~, may or may not exist. The sequence {AK}
diverges by drifting, and so does {Ak}, iff 24| < 1 and there exists no
simultaneous period i for the powers of eigenvalues with unit absolute
values. As discussed previously, a simultaneous period i for the powers
of eigenvalues with unit absolute values exists iff the individual periods
4y exist, and u; exist for A = 1 and X = —1 as 1 and 2, respectively. The-
refore, the nonexistence of 1, requires the existence of at least one comp-
lex eigenvalue with unit absolute value having no period.

SPECIAL CASES

For a more detailed analysis, lets restrict ourselves to the case e
< 1 where a simultaneous period 15 exists for the powers of eigenvalues
with unit absolute values. If 1; does not exist, then {Ak} diverges by
drifting. If [2;| > 1 for at least one %, then {Ak} — co. Lets write A
(1) in the partitioned diagonal form as

A = Diag. (I, U, D, 0) (10)

where I is the n; X n; identity matrix containing n; unit eigenvalues
on its diagonal, U is the ny X n, diagonal matrix containing n, eigen-
values with unit absolute values other than A = 1, D is the n; X nj
diagonal matrix containing nj nonzero eigenvalues such that 3| < 1,
and O is the ny; X ny null matrix containing ny zero eigenvalues. There-
fore n; - ny + n3 + ng = n, and it is possible that n; = 0 for some
i, meaning that the corresponding matrix does not appear in (10). Lets
partition the P (2) and P! matrices accordingly as

P = (P, P,, P;, Py)

(1)
Q:l

()
P-1 = { Q'3
Q4



16 TAYLAN A. ULA

where P; is the n X n; mairix containing the n; eigenvectors correspon:-
ding to the n; eigenvalues represented by the i-th submatrix in A (10),
and ’; is an n; X n matrix containing n; rows of the P! matrix. It
follows from P P-1 = I that

PQ'; + PyQs + P3Q's  PQ'y =1 (12)
and from P-! P = T that Q;/P; = I and Q;'Pj.= 0 fori # j. From (10),

Ak = Diag. (I, Uk, Dk, O), k=1,2, .. (13)
and from (3), (4), (10), (11) and (13),

A = PQ'; + P,UQ, + PiDQ’5 (14)

Ak = P,Qy + P,UkQ’, + P3DXQ’;, k= 1,2,... (15)

The matrix DX in (15) changes continuously with k and its effect
on AX diminishes only in the limit. The sequence {D¥} — 0 by (7) and,
therefore, {P3DkQ’;} - 0 by Theorem 1. Therefore, when nj; # 0,
the sequence {Ak} has no specific finite behavior and we can only es-
tablish its limiting behavior.

The matrix UK in (15) oscillates with k with a period t, that is,
Uk — U for k=1, 14 1, 1 + 2u4,... . If g~ also exists, then Uk
also changes sign with a period 15—, that is, Uk = —Ufork =1- 1,
1L 31z .. . If g~ exists, then the sequence {Uk} contains only g~
distinct elements (disregarding sign) U, U2 ..., U'e” which change sign
with a period iz, If 1z~ does not exist, then {UX} contains tg distinct
elements U, U2,..., Ul which repeat themselees with a period 1z wit~
hout changing sign. Note from (15) that when n3 = 0, the matrix Ak
has the same period 1, as the matrix UK. In this case, if U also changes
sign with a period 1g, then Ak can change sign, with the same period,
only if n; = 0, that is, only if the fixed matrix P,Q’; does not appeai
in (15). As an example, let n; = 0, 1g = 4 and 1;~ = 2. Then the sequ-
ence {UK} expands as U, U2, -U, -U2, U, U2,..., which change sign with
period 2 and repeat with period 4. The sequence {Ak} can then be ex-
panded as A, A2, A3, A4, A A2, A3, A4,..., where A = P,Q"; -+ PUQ,,
A2 = PyQ; - PU2Q", A3 = P1Qy —P,UQ, and A4= P,Q) —
P,U2(Q),, whick repeat themselves with period 4 without changing sign.
If P,Q’; does not exist, then the sequence {AK} can be expanded as A,
Az, —A,—A2, A, A2,..., where A = P,UQ"; and A2 = P,U2Q’,, which chan-
ge sign with period 2 and repeat with period 4.

We will now consider various cases in detail for the behavior of Ak
through (15). In each case considered, we set one or more of the n; va-
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lues equal to zero (and assume that the other n; values are in general
nonzero) to generate various special cases. !

CASE 1 ny = n3 = 0 {(x=20,1)
In this case, it follows from (15) that
Ak = P Q" k=1,2,..

Since the eigenvalues here consist of only 0 and 1, if A is a nensymmet-
ric matrix with distinct eigenvalues, then it should be a 2 X 2 matrix.
If A is a nonsymmetric matrix with repeated eigenvalues for which a
a set of linearly independent eigenvectors exists, then A can be of any
size. This is the case of an idempotent matrix. A matrix A is called an
idempotent matrix if A = A2. The eigenvalues being 0 and 1 is a neces-
sary and sufficient condition for idempotency of a symmetric matrix,
but it is only a necessary condition for a nonsymmetric matrix [2]-
The result given above for Ak proves sufficiency for a nonsymmetric
matrix also but only under the stated conditions.

This is the only case where Ak is a fixed matrix which does not de-
pend on k.

CASE 2 ny=0  (jy[=0,1)

In this case, it follows from (15) and the periodic behavior of the
Uk matrix that

AX = P;Q"; + P,UKQ,, k=12, ..
AE = P, - P,UQ,, k=1, 14 tg 1 - 2.
AR = P,Q") — P,UQ,, k=14 17~ 1 3.

the last equation being applicable only if 1~ exists. Here A has a peri-
od g but it does not change sign. The sequence {AK} contains iy distinct

elements A, A2 ..., A'e which repeat themselves with a period .
If 1, = 1, which happens iff U = -I, then 1, =2, 3, = 0, 1, -1

and :

A¥ = P;Q"y — P,Q", k=1,3,.

Ak = P1Q") 4- P»Q", k=24,.

Here Ak oscillates between two matrices, A and A2, depending on whet-

her k is odd or even. Note again that if A is a nonsymmetric matrix

with distinct eigenvalues, then it is a 3 X 3 matrix here. This is the case
of a tripotent matrix. A matrix A is called a tripotent matrix if A = A3,
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The cigenvaiues being 0,1 and -1 is a necessary and sufficient condition
for tripotency of a symmetric matrix, but it is only a necessary conditi-
on for a nonsymmetric matrix [2]. The results given above for AX pro-
ves sufficiency for a nonsymmetric matrix also but only under the sta-
ted conditions. If ng = 0 also (\; = 1, -1), then it follows from (12) and
AK above for even k that Ak =1, k= 2,4, ....

CASE 3 my=mn3=0  (n|=01Dbutny #1)

In this case,

AK — P,UKQ",, k=1, 2, ..
Ak — P,UQ",, k=1, 14 g 1+ 20
Ak = "—‘PZUle, k=1 —l“ Lg_, 1 + Sbgh,.u

Here AX has a period 15, and it changes sign with a periods 157, if 15~
exist. If 1o~ exists, then the sequence AX contains 1z~ distinct elements
A, A2,..., A's~ which change sign with a period 1z~. If 15~ does not exist,
then {Ak} contains iz distinct elements A, A2 ..., A'¢ which repeat
themselves with a period 1.

If ;= =1, that is U = -1, then g = 2, 3y = 0, —1 and
Ak = —P,Q, k=1,3,..
Ak = P, k = 2,4,..

Here Ak oscillates between A and -A depending on whether k is odd or
even.

Cases 2 and 3 contain all the special cases where the matrix Ak
has a period. In Case 2, AKX cannot change sign but in Case 3 it can.

In Cases 1 to 3, n; = 0 and, therefore, the sequence {Ak} has a
specific finite behavior. When n3 # 0, {AK} has no such behavior and
we can only establish its limiting behavior. The following cases will
cover these situations.

CASE 4 1y = 1y = 0 (<D
In this case,
AX = P,DkQ’5, k=1,2,.
lim Ak =0

k-0

Note that Theorem 2 gives a more general and more stronger form of
this result.
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CASE 5 n, = 0 (In] <1, and 2 = 1 for at least one ).
In this case,
Ak = P,Q'| + P3;DEQ;, k=1,2,..
lim A¥k = P;Q/

k-

In Cases 4 and 5, the matrix AK in the limit is a fixed matrix, that is,
more formally, the sequence {AX} converges.

CASE 6  n; =0  (jn]<1butn 1)

In this case,

AKX = P,UKQ’, + PyDXQ’s, k=12, ..
Ak = PzUQ’z —|— P3DkQ,3, k= ]_, 1 Jl— lgy 1 + 2Lg,...
Ak = —*PzUQIZ - P3DkQ’3, k=1 + lg 1 -+ 3lg_,...

Since {P;D*Q’3} - 0, the matrix AX in the limit has a period g, and
it changes sign with a period 1, if 15~ exists. If 1z~ exists, then the se-
quence {AK} in the limit contains 1,~ distinct elements, P,UWQ",, i =
1,2, ..., g, which change sign with a period 1z~. If 1~ does not exist,
then {Ak} in the limit contains iy distinct elements, P,UIQ"%, i =1, 2,
-5 tgs Which repeat themselves with a period .

If yw=1,thatis U= —I, then 1 = 2, || < 1, and 33 = —1
for at least one ;. In this case,

Ak = _P,Q% + P;DkQ’;, k=1,3, ..

Ak = P,Q’; 4 P3;DkQ;, k=24,..

Here the matrix Ak in the limit oscillates between the matrices —P,Q,’
and PyQ)’, for odd and even k.

CASE 7 nj, ny, n3 all nomzero (|| << 1, and 3 = 1 for at least
one }y)

In this case,

Ak = P;Q'; + P,UXQ, -+ P;DkQ’;, k=1,2,..

Ak = PQ'y + P,UQ’;  P3DkQ’;, k=1,14 1g, 1 4+ 2g,...
Ak = PyQ'; — P,UQ’, 4 P3;DkQ’;, k=14 g, 1+ 3.

Here the matrix AKX in the limit has a period 1z but it does not change
sign. The sequence {AK} in the limit contains i distinct elements, P;Q"
-+ P,UQ", i = 1, 2, ..., 1, which repeat themselves with a period 1g.”
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If ww=1, that is U = -1, then 1, =2, n! <1, and X =1

and 23 = —1 at least once. In this case,
AR = PQ’y — P,Q’» -+ PyDEQ’ 5, k=13, ..
Ak = :PIQ’I ~%~ PZQ/Z + P3DKQ,3, k = 2, 44, e

Here the matrix AKX in the limit oscillates between the matrices P;Q —

P,Q’y and P,Q’y 4 P,Q’, for odd and even k.

In Cases 6 and 7, the matrix AKX in the limit has a period. In Case
6, AX in the limit can change sign whereas in Case 7 it cannot.

Cases 1 to 7 include all special cases for [A;! < 1 where a simulta-
neous period iy exists for the powers of eigenvalues with unit absolute
values. In Cases 1, 4 and 5, the sequence {AK} converges. In the others,
{Ak} diverges by oscillation. The remaining two cases which include
divergence of the sequence {AK} to infinity and its divergence by drif-
ting are stated below for the sake of completeness.

CASE 8 A1 >> 1 for at least one A;.
lim Ak == o
k—-w
CASE 9 = |n] < 1 and there exists no simultaneous period tg for

the powers of eigenvalues with unit absolute values.

In this case, the sequence AX diveregs by drifting. As mentioned
previously, this mode of divergence requires the existence of at least
one complex eigenvalue with unit absolute value having ne period for
its powers. Divergence by drifting cannot accur for symmetric matrices
due to nonexistence of complex eigenvalues. k

It should be noted from (14) and (15) that the zero eigenvalues have
no direct effect of A and Ak. However, the presence or absence of zero
eigenvalues, or of their eigenvectors Py, affects the matrices P, Py,
P;, Q4, Q, and Q; through (12), and therefore affects A and Ak as well.
In most of the Cases 1 to 9, setting ny = 0 does not affect the nature
of the results.

Symmetric Matrices

The power of a symmetric matrix with distinct or repeated eigen-
values can be analyzed as a special case with considerable simplificati-
ons due to the nonexistence of complex eigenvalues and the existence
of real orthonormal eigenvectors.
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NUMERICAL EXAMPLES

In this section, numerical examples are provided to verify the analy-
tical results previously obtained. All the results can be illustrated simply
by using 2X2 or 3 X3 matrices, with no loss of generality. It is well
known that for a triangular matrix, the diagonal elements are the ei-
genvalues. This can be used to construct real nonsymmetric matrices
with any desired real eigenvalues. We utilize this in three of the examp-
les.

In Table 1 below, for each example, we indicate the case number
(Cases 1 to 9 of the previous section) to which the example belongs,
we give the A matrix, its eigenvalues };, and the AX matrix, either for
finite k or in the limit as k—>oo. For Cases 5, 6, and 7, we also provide
the P (2) and P! matrices so that the limiting results can be verified
using the eigenvectors pi, which are the columns of P, and the vectors
q'i. which are the rows of P—1. Although the P matrix is not unique, the
limiting results are invariant with respect to the choice of P. For Cases
5, 6, and 7, the limiting results are all realized for 10 < k < 22. The
reader can verift the results given for AX either numerically by actually
obtaining them through successive multiplication of the A matrix or
analytically by using the equations given under Cases 1 to 9 of the pre-
vious section.

The A matrix in the example for Case 5 is acceptable as the transi-
tion probability matrix of a time-homogeneous two-state Markov chain.
The k-step transition probabilities are given by Ak, and the steady-sta-
te probabilities, 0.25 and 0.75, of the two states are given by the ele-
ments of the identical rows of the limiting AX matrix.

The last two examples in the table involve matrices with repeated
eigenvalues. For the A matrix with eigenvalues ; = 1, 1,5, there exists
a set of linearly independent eigenvectors as given by the nonsingular
P matrix in the table. Therefore, our results are applicable for this case,
and since A3 = 5 > 1, this belongs to Case 8 and |AX} diverges to infi-
nity. For the A matrix with eigenvalues ; = 1, 1, the eigenvectors in
their general form are given by the P matrix in the table. Since this P
matrix is always singular, there cannot exist linearly independent eigen-
vectors in this case, and therefore our results are not applicable. It can
be verified numerically that the sequence ({Ak} diverges to inifinity
here. If there were linearly independent eigenvectors, this would belong
to Case 1 and A¥ would be a fixed matrix for all k.
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Table 1. Numerical Examples for Powers of Nonsymmetric Matrices

k(odd)—-00

—Ease
No. A X ‘ Ak
1 0.7 9.21 =1 Ak—A, k=1,2,
(1.0 0 30) Rg=0
2 0 -1 0y |ns=1 -1 00 01 0
(1 0 o) Ae=i Al (0-1 0), AY = (-1 0 0), At=]
0 01 Nt 00 1 001
Ak—a, k==1,5,9,.
Ak A2 k=2.6,10,
Ak=A3  k=3,711,
Ak k=4.8,12,
2 02 3 =1 0 2 5, Ak—A, k=1,3,..
(o 1 4) o=—1 Az (0 1 0) Ak—a2 k=24,
0 6 -1/ |xn=0 0 0 1
2 2 1 Ay==1 Ak—p, k=1,3,...
-3 —2) a=—1 Ak—1T, k=24,...
3 11 A=i -1 0, A=A, k=1,59,...
(vz —1) Rg=—i A= ( )Ak:AZ, k=2,6,10,. ..
0 -1/ AF—-A, k=3711,...
AkR—_A2, k=4,8,12,. ..
3 2 -1 A=-1 Ak—=A4, k=1,3,
(6 -3 ho=0 Ab— A, k=24,
4 0.1 0.05\ |[2,=0.210.3i | lim A¥=0
-2 0.3} [ %=0.2-0.31 | k->c0
5 0.4 0.6y | n=1 1 -3 1 3
(0.2 0.8) 12,=0.2 = ) P =1 )
1 1 -1 1
13
lim AK = pyqh = 1 ( )
k—o00 1 3
6 112 Ay=0 11 16 0 3 -18
(003 ) a==1 P = 1018),P“‘=%(3 -3 2)
000.5/ {3=0.5 00 3 0 o0 1
3 -3 2
lim A¥ = pq, =1} (0 0 0)
k(even)—>00 0 00
lim AX = Pof’
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Table 1. Cont’d

‘ Case )
No. A A f AF
7 -12 3 19 1 4 0 0 3
(oos4> P:(1603) pri=} (6 -8 7 )
00 1 2 0 0 0 2 -16
-6 .8 50
lizn A R e I :%5 ( 0 0 48>
k(odd)—c0 0 0 6
6 -8 64
lim A¥ = pgybpags = % (0 0 48)
k(even)-~00 0 0.6
8 | 510 ha==14-2i lim Ake=00
(—2 —3) hop=1—-2i k00
9 -0.4 2,=0.8-10.61 {Ak} diverges by drifting
(1 O,()) Ra==0.8—0.6i

8 2 11 =1 -1 -1 1
(2 3 2) Rp==1 P ( 1 0 2), lim AR=cp
112 X=5 0 11 k—»00
- (1 0 H=1 0 0
2 1) ho=1 :( ) C#0, (40
¢, C
lim AF = o0
kf—a»oo

SUMMARY AND CONCLUSIONS

The present study investigates the finite and the limiting behavior
of the power of a real nonsymmetric matrix with distinct eigenvalues
through its spectral decomposition, which proves to be very convenient
for such an analysis. The hbahavior of the power of such a matrix can be
determined from the eigenvalues and eigenvectors of the matrix. Analy-
tical results for all special cases of practical interest are obtained, and
numerical examples are provided. The results are valid also for nonsym-
metric matrices with repeated eigenvalues previded that a set of line-
arly independent eigenvectors exists. Powers of symmetric mairices,"
with or withour distinct eigenvalues, can be analyzed as a special case.
Since a detailed summary of results is given as Case 1 to 9 in the paper,
we will content with a general summary here conserning the power Ak,
k= 1,2, .., of a nonsymmetric matrix A sati fyinz the conditions sta-
ted above:
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i) The presence of an eigenvalue of A with absolute value greater
than one causes the sequence |A¥} to diverge to infinity.

ii) When the eigenvalues of A ave less than or equal to one in abso-
lute value and there exists no simultaneous period i, for the
powers of eigenvalues with unit abselute values, the sequence
{Ak} diverges by drifting. That is, the sequence changes con-
tinuously without oscillation or without diverging to infinity.
This mode of divergence requires the existence of at least one
complex eigenvalue with unit absolute value having no period
for its powers. Divergence by drifting cannot occur for symmet-
ric matrices duc to nonexistence of complex eigenvalues.

iii) When the absolute values of the eigenvalues of A belong to the
set (0,1) and i3 exists, AX is either a fixed matrix which does
not depend on k or it oscillates with period 4.

iv) When there are nonzero eigenvalues with absolute values less
than one (and no eigenvalue with absolute value greater than
one) and g exists, the matrix A¥ is neither fixed nor it oscillates,
but it exhibits such behavior only in the limit. That is, the se-
quence (AL} either converges or diverges by oscillation.

v) The sequence {AK} converges to the null matrix if and only if
all the eigenvalues of A are less than one in absolute value.
This result is actually true for all matrices.

vi) The matrix AE oscillates, either for finite k or in the limit, only
if there exist eigenvalues with unit absolute values other than

the unit eigenvalue and 1, exists.

SIMETRIK OLMAYAN MATRISLERIN KUVVETLERI

OZET

Simetrik olmayan ve karakteristik degerleri farkhi olan gercek bir
matrisin kuvvetinin sonlu ve limit davramslar matrisin spektral ayrs-
tinimi yoluyla analiz edilmektedir. Pratik degeri olan biitiin 6zel durum-
lar i¢in analitik neticeler elde edilmekte ve sayisal érnekler verilmekte-
dir. Neticeler, dogrusal olarak bagimsiz karakteristik vektorlerin meveut
olmast sartiyla, baz karakteristik degerleri aym olan simetrik olmayan
matrisler icin de gegerlidir.
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