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ABSTRACT

Convex subsets, eonvex bodies and foot points in the unit n-sphere S" are defined. Some
geometric properties of convex bodies and foet points in S® -as a manifold with focal points-
are derived in comparison with the corresponding properties of convex bodies in both Euclide-
an space E™ and a Riemanninan manifold W without focal points.

1- INTRODUCTION

In [8], P.J. Kelly and M.L. Weiss proved some interesting results
when they studied the basic geometric properties of convex bodies in
the Euclidean space En. Recently, we studied the same properties when
the ambient space is a complete simply connected Riemannian manifold
W without focal points [3, 4]. It was found in [3, 4] that almost all the
results in ED -concerning convexity, foot points and sectional curvatures-
are still valid in W. As far as we know, properties of convex bodies which
have been considered in [3, 4, 8] have not yet been considered for the
same sort of bodies in the unit n-sphere St Consequently, this work is
mainly devoted to study some geometric properties of -convex bodies
in sphere. Illustrative examples in En and S® are given as a comparison
study to show how results are affected by the existence of conjugate
points in the ambient space Sn.

In the following we give some of the results proved in [3, 4, 8].
Proposition (1-1)

Closed geodesic balls in W are convex bodies. Geodesic spheres in
W are closed convex hypersurfaces. Horodiscs in W are convex subsets.
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Proposition (1-2)

If p is an interior point in a convex body B = W (or E?) with smooth
boundary ¢B, then each geodesic ray from p intersects the hypersurface
¢B exactly at one point and the intersection is transversal.
Proposition (1-3)

For a convex body B © W (or En) with smooth boundary ¢B
(i) each tangent geodesic vy to ¢B has the property v n Int (B) = o,
(i) B lies on one side of the tangent geodesic hypersurface of B at

each point p € 0B
(iii) no two outer geodesic rays perpendicular to B meet.
Proposition (1-4)

For a compact smooth hypersurface M in W there exists a point
p € M such that the sectional curvature K (M) of M at p satisfies K (M)
= Kp(W). o

The remarkable 1.. Amaral’s theorem [1] can be concluded directly
and easily from the last proposition (1-4) if we replace W by the hyper-
bolic space Hn (See [3].

For other interesting results, specially concerning foot points, we
refer the reader to [2, 3, 4, 8]. From now on the unit sphere S? is always
taken as an imbedded hypersurface

Sno— {x:ern,<x,x>:1}

in EP. Geometric properties of S may be found in any text book in dif-
ferential geometry. All curves are parametrized by arc length. All ma-
nifolds are sufficiently smooth for dicussions to make sense.

2~ Definitions and Background

Let us begin with introducing the convexity concept in a general
Riemannian manifold M.

Definition (2-1)

A set A in M is called convex if for each pair of points p, ¢ € A there
is a unique minimal geodesic segment from p to g and this segment is in

A.
Definition (2-2)

A set B in M is a convex body if it is a compact convex subset of
M with a non-empty interior. A strictly convex body is a convex body
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B such that the boundary ¢B of B does not contain any geodesic seg-
ment of M.

Defi_llition (2-3)

A set B¢ is a closed convex (resp. strictly convex) hypersurface of

M if it could be made as a boundary of a convex (resp. strictly convex)

body B in M, i.e B° = éB.

In the light of the above definitions we can easily prove the follo-

wing remarks.

Remarks

(a)

1)

(e)

(d)

(e)

(f)

(8)
(h)

()

The whole of S1 is not a convex sel in contrary to the convexity

of En (or W).

Any convex body B in 5" is contained in an open hemisphere 5,0
of St with some point v € St as its center.

No two points of a convex body B < St form a conjugate pair.
Same thing is valid in a general Riemannian manifold M.

Any convex body B < St can be mapped geodesically onto a con-
vex body in EP by using the Beltrami (or central projection) map

2, 6].

Any closed geodesic ball B (p, r) centered at an arbitrary point
p € S® with radius r << =/ 2 (small geodesic ball) in S? is a convex

body. This fact is true, in general, for any geodesic ball in either En
or W.

Any closed geodesic ball of radius r > =/ 2 is not a convex body
in S® and consequently the closed half-space of S is not a convex
body in contrary to the same property in either En or W [3] (By
half-space in W we mean horodiscs). A geodesic ball of radius r =
7t/ 2 will be called great geodesic ball.

“Any geodesic sphere S (p, r) of center p and radius r < 7/ 2 (small

geodesic sphere) in S? is a convex hypersurface.

Totally geodesic hypersurfaces (great spheres) in S? are non-convex
hypersurfaces. Also, geodesics of SR are non-convex subsets of ST,

A geodesic sphere S (p, r) of radius r in S™ has constant sectional
curvature K = 1/sin2r [2]. In this way, a totally geodesic hyper-

~sphere in St has sectional curvature K = 1 while small geodesic

spheres in St are of constant sectional curvatures greater than 1.
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(j) 'The closure of an open convex subset in SP is not necessarily convex.
Open hemispheres in S® are good examples of this case. In En (or
W), the closure of any open convex subset is always convex (See
[2, 3]). The proof of this fact depends basically on the truncated
geodesic cone concept defined below. :

(k) Any subset A of Sn with diameter d(A) > = does not have a convex
hull H(A) where H(A) always exists for any subset A < En,
If A = St has d(A) < =, then H(A) exists. We can show that Belt-
rami maps from S0 to E» [2, 6] preserves convex subsets as well
ag convex hulls.

Definition (2-4)

Let v be a geodesic ray in S™ from p. A truncated geodesic cone
ply in SN with vertex p and axis v is the family of all geodesic segments
emanating from p with the same initial angle with y and each segment
is of length less than =

The length = is excluded in the above definition so as to’ avmd con-
jugate points of p on the surface of the cone ,Cy.

We can glve another definition of the cone ,Cy as follows

Consider the exponential map expp: TpSB — Sn restricted to a ball
B (0, r)=T,Srof radius r < m. This map is a diffeomorphism on B (0, r).
The cone ,Cy will be taken as the image of a cone oCp with vertex 0
and axis the straight line segment L in TS such that ¢C;, = B (0,1).

One of the main results we shall use later on is the following which
relates the height function of a submanifold N in a Riemannian mani-
fold M with its second fundamental form [7].

Proposition (2-1)

Let N be an immersed hypersurface of a Riemannian n-manifold

M. Let p be a point of N. Then the second fundamental form of N at

p is the Hessian of the height function of N with respect to its tangent
space TpN as a hyperplane of T M. :

3- Main Results on Convexity
Lemma (3-1)

Let B be a convex body in S? with smooth boundary &B. If p is
an interior point of B, i.e p e Int (B), then each geodesic ray from p
intersects of hypersurface éB for the first time transversally.
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Proof

Let v: [0, o) - S™ be an arbitrary geodesic ray such that p =
¥(0). This ray y can not be contained wholly inside B otherwise B will
not be contained in an open hemisphere of S? contradicting remark (b).
Assume in contrary to the lemma that y has a tangential first intersec-
tion, say y(a), with oB. Clearly, the geodesic segment v [0, a] is free from
conjugate points of y(a). Draw a thin geodesic cone y4)Cy with vertex
v(a), axis v and base D in B (See Fig. (1)). Then there exists a minimal

geodesic segment v from vy(a) to x € D such that v ¢ B contradicting
the convexity of B and the proof is complete.

Corollary (3-1)

Let p be an interior point of a convex body B < St with smooth
boundary 9B. Let y: [0,2 <] -> S8 be a closed geodesic through p such
that p = y(0) = vy(2n). Then the first and the last intersections of vy

with 2B are transversal.

Lemma (3-2)

Let p be an interior point of a convex body B < St and y: [0,2 =]
~-81 be a closed geodesic through p such that p = +(0). Let y(a) and v(b),
b >> a, be the first and the last intersections of y with B. Then y(a, b)

nB=g.

Proof

Let y be a closed geodesic through p as given in the lemma. Assume
in contrary that y(a, b) N B # @. Without loss of generality, we con-
sider the case when y(a, b) n B is a single point, say q = y(c), for a <
¢ < b. (See Fig. (2)).
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Fm.ﬂ)

The geodesic segment +y[a, ¢] should not be minimal otherwise B
will be no -convex. Consequently y[a, ¢] contains a pair (q, qz) of
of conjugate points. Also, the geodesic segment v [¢, b] contains a con-
jugate pair (s, s;) of points contradicting the geometry of geodesics in
Sn, The other possibilities can be discussed similarly.

From the above two lemmas we arrive at the following.

Proposition (3-1)

Any closed geodesic y through an interior point p of a convex body
B < St with smooth boundary ¢B intersects 0B exactly twice. The
intersections are all transversal.

Corollary (3-2)

The smooth boundary ¢B of a convex body B < Se is diffeomorp-
hic to So—1,

This corollary can be justified as follows.

Let B becontained in the open hemisphere S " < S of center p. Draw
a small geodesic sphere S (p, §) of center p € Int (B) and sufficiently
small radius 3 such that S(p, 3) < Int (B). By the convexity of B and
B (p, 3), any geodesic ray from p intersects —for the first time- both
S(p,3) and & B transversally. In this way, we can build up a central
projection diffeomorphism B : 8B — S (p, 3). If we compose B with
expp~L restricted to Sy, we obtain a diffeomorphism exp~ipoB : 6B -

S(0, 3) = TSt ~ En,
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Proposition (3-2) .

Let B < St be a convex body with smooth boundary B and p € 9B
an arbitrary point. Then B lies on one side of the great hypersphere
tangent to ¢B at p.

Proof

Assume in contrary to the proposition that B does not lie on one
side of the great hypersphere tangent to 6B at p. Consequently, there
exists a closed geodesic y, with orientation indicated in Fig. (3), tangent
to OB at p which intersects 0B at least twice, say at q, r € @B, transver-
sally (Lemma (3-1)). The geodesic segment ypq -as it lies outside B- is
not minimal and consequently there exists a point s € ypq which is con-
jugate to p. The geodesic segment ¥ 4 is not contained in B which cont-
radicts the convexity of B and the proof is complete.

Pig. (3)

Another proof of the above proposition (2-1) may be given if we notice
from Fig. (3) that p has two different conjugate points, the first is on
Ypq and the other is on y;p, contradicting the sphere geometry.

The converse of the above proposition is not generally true as any
closed hemisphere Sy centered at u e St in St lies on one side of each
tangent great hypersphere to 9S,» while S,» is not a convex body in’
Sn. Actually, Sy» has only one tangent great hypersphere to 8S,2 which
is itself &Syn. The above proposition (3-2) together with its converse are
true in ED as well as in W [3, 4].

In the light of the above proposition (3-2) and taking into account
the property. mentioned in proposition (2-1), we have the following
consequences.
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Corollary (3-3)

For a convex body B < 8m, each boundary point p is a global
minimum point of the height function -with respect to the inner direc-
tion and p as a base point- of either B or ¢B.

From this corollary, we can easily show that at each point of B
the Hessian of the height function as well as the second fundamental
form are definite (or semi-definite) [3] and so we have the following
results.

Corollary (3-4)

For a convex body B = Sn, all the boundary points of B have sec-
tional curvature K satisfying K > 1.

Corollary (3-5)

For a convex body B < Sn, there exists at least one point p & JB
with sectional curvature K strictly greater than 1.

The reason is that B is contained inside a closed ball B(p, r) for
some p € S? and r << 7w/ 2 where 9B n 2B (p,r) # @. For an arbit-
rary point q € éB n B (p, r), we have easily -using remark (i) and the
height function concept and its relation with sectional curvature -that
K4 of 6B at q satisfies

K4 > 1/sinZy > 1.

Corollary (3-5) can be proved for any closed (not necessarily con-
vex) hypersurface M of St such that M is contained in an open hemis-
phere of Sn. In this case, we shall obtain a result similar to that of L.
Amaral [1] but in the spherical ambient space.

The following proposition (3-3)gives a necessary and sufficient con-
dition for boundary points of a convex body in S to be global maximum
points of the height functions.

Proposition (3-3)

For a convex body B < S», each height function on B -with res-
pect to inner direction and boundary base point -has a global maximum
point on the boundary &B if and only if the diameter d(B) of B satisfi-
es d(B) < w/2. (The proof is direct)

The following example shows how the condition d(B) < m/2 is
substantial in the above proposition.
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Example (3-1)

Let us consider the closed geodesic ball B (p, r) < S centered at
peSt with radius 7/ 4 <r < w/2 as a convex body in 81, Without loss
of generality, let us take B (p, r) to be contained in the upper hemisp-
here of S and let q & B (p,r) n S (u, 7/ 2) where v is the north pole
of S1. It is clear that v which is an interior point of B (p, 1) is the global
maximum point of the height function based at ¢ (The height of x ¢ B
is d (x, S (v, ©/ 2)) (See § 4)). Notice that in En, global maximum po-
ints of each height function are always boundary points (See Fig. 4).

28

3
Fige (4-a) Fig. (4=b)

In Euclidean space ED, it has been proved that for a convex body
B < En all the points of the segment L joining an arbitrary point p €
Int (B) and a boundary point q ¢ ¢B are interior points (except q.) The
corresponding result in W is also valid [4] but in S? -as a manifold with
conjugate (or focal) points -we should add a restrictive condition as fol-

lows.
Proposition (3-4).

Let B a convex body in S®, p € Int (B) and q € B. Then all the po-
ints of the unique minimal geodesic segment v joining p and q are in-
terior points except (.

The preof can be carried out by using the truncated geodesic cones
concept as it has been done in [3, 4].

The converse of the above proposition (3-4) is not generally true.
One might consider any closed hemisphere in St as an example. The
converse is true if we replace St by En (or W). The reason is that if all
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the points of the geodesic segment v joining p € Int (B) and q € ¢B are
interior points (except (), then B will be a starshaped subset of En
and p will lie in the kernel (Ker (B)) subset of B. In addition, if this is
true for all the interior points of B, then Ker (B) = B and consequently
B is convex. :

4— Foot Points

The distance d (p, S) from a point p to a non-empty subset S of
a Riemannian manifold M is defined as [8].

d (p. S) = glb {d (p, x): x e S}t
Definiton (4-1)
A point p has a foot qin a subset S < M if
i qes,
(ii) q (p.q) = d(p, S)

One may understand that the foot point of p in S is the nearest peo-
int of S to p. Moreover, if S is the closure of S and p ¢ S, then d (p, 5)
= d (p, 8S), i.e the foot point of a point p, in the closure S of S, is always
a boundary point provided that p ¢ S. If p € S, then p is the unique foot
point of itself. Clearly, the foot point of a point p ¢ S in a closed subset
S with smooth boundary 9S is a critical point of the distance function
dp:28 > R defined as dp(x) = d (p, x). Also the critical geodesic seg-
ment from p to the foot point strikes ¢S orthogonally at the foot point
(See [5] p. 216). ~

Proposition (4-1)
Let B be a convex body in S and p e S® such that d(p, B) << =/ 2.
Then p has a unique foot point in B.

Proof

If d (p, B) = 0, then p ¢ B and p is the unique foot point of itself

as indicated above.

"If 0 < d (p, B) < =/ 2, then p € B. Assume in contrary that p has
two different foot points, say q; and qy. Let d (p, q;) = d (p, @) = t.
where « << /2. Draw the closed geodesic ball B (p, ). We have that
B n B (p,t) =){q1 92}. As B (p, ) has diameter less than 7, then B
(p, 1) is a convex body in S7. In this way, the unique minimal geodesic
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segment vy joining q; and ¢, is contained in B (p,1). Hence, v ¢ B
which contradicts the convexity of B. A similar discussion can be car-

ried out if p has more than two foot points.
Remark (4-1)

If d-(p, B) > = /2, then the above proposition (4-1) is not necces-
sarily true in the light of the following example.
Example (4-1)

; Consider B to be a convex body in S2 which has a part y of its
smooth boundary 0B = v, U v, as a sufficiently small geodesic segment
The south pole p of S2 which satisfies d (p, B) = =/ 2 has all the points
of v; as foot points. (See Fig. (5)).

P

Fig. (5)

We can show that the above proposition (4-1) is still true for
d(p, B) < = /2 on the condition that B is strictly convex.

The concept of the foot points in subsets as well as convex subsets
in sphere (or more generally in a Riemannian manifold) deserves to de-
vote a separate work. We hope to acheive such a study in the near future.
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