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ABSTRACT

In this study, first the partition entropy is reminded then the basic properties of the par-
tition entropy are given without into details.

Then the properties of the topological dynamical system with continuous time are inves-
tigated and some important properties of it are proved.

INTRODUCTION

In 1958 Kolmogorov [4] Introduced the concept of entropy in
ergodic theory and investigated the fundamental properties of entropy.
In 1959 the definition of entropy of a dynamical system was given
hy Sinai [6].

The properties of the partition entropy of dynamical system are
investigated by Rochlin {5] and Billingsley [3]. Then the definitions of
flow entropy and skew product dynamical system are given by Abromov
and some properties of these are proved [1] and [2].

The entropy of a dynamical system is defined in three steps. The
entropy of a finite measurable partition P = A, ,..., Ap} is defined
by

n
Hy(P) = — 2 m (Aj) log m(Ay).
i=]
The entropy a finite measurable partition P relative to f is

n-1
b (P, £) = lim  sup .111_ Ho, (V £-1 P)

n->m i=0

It turns out that the limit superior here is really an ordinary limit.
Finally the entropy of a dynamical system is
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hy (f) = sup hy, (P, f)
where the supremum extends over all finite measurable partition.

In this article by using the methods of Abromov’s and Rochlin’s
the relative entropy of topological dynamical system with continuous
time is defined and some basic properties of it are proved.

1. ENTROPY

Let (X, A, m) be a measure space and Let f:X — X be a continuous
map M (X, f) denotes the space of all f-invariant measures which are
defined on the measurable space (X, A). M (X, f) is convex and compact
in the weak-topology.

1.1. Definition. If P= {Aj, Ay,..., Ay} is a finite measurable
partition of X and for every m e M (X, f) then the function

=

Hy (P) = X z(m(Aj)) is called entropy of partition P.
Where the function

( ~tlogt  if t >0

z(t) =1
0 ift=0 t=1

is non-negative, continuous and strictly concave function. All logarithms
in this paper will be taken to the natural base.

1.2. Proposition. Let P, Q be two finite partitions of X and m ¢ M
(X, f). Then

iy a) Hy (P) >0
by Hu(P) =0 iff P = {X,Q}
i) Ho(P)>HaQ  iP=0Q
i) Hp (PvQ) > Hu (P) + Hi (Q)
iv) Let (Pn)nh be a sequence of measurable partitions of X

If P, > P as n - oo then Hy (Py) -~ Hp (P) [5].

1.3. Definition. Let P and Q be two finite measurable partitions
of X and for every m ¢ M (X, f) then the function
_ m (A n Gy
Hp (P | Q) = — Ej m (A; n Gy log Tm(©)

is called conditional entropy of the partition P given Q.
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1.4. Proposition. Let P, P, Py, Q, Q;, Q, be finite measurable
partitions of X and for every m ¢ M (X, f). Then

1) Hy (Pyv Py [Q) = Hu (P, | Py v Q) + Hu (P | Q)

2) Hu (Py v Py) = Hy (P, | Py) -+ Hp (Py)

3) Hi (Pyv Py [Q) < H (Py [ Q) + Hin (P, | Q)

4) Hn (P | Qv P) < Hnm (P | Q) < Hy (P)

5) Hm (P 1 Qo) < Hm (P | Qy) if Q; < Q,

6) Hm (Py [ Q) < Hn (P, | Q) it P <Py

7) Hm (Py [ Q) < Hn (P; v P, | Q)

8) If f is a measure-preserving map then

Hu (fP [£Q) = Hu (P | Q) [7].

2. DYNAMICAL SYSTEMS WITH CONTINUOUS TIME AND BA-
SIC PROPERTIES -

2.1. Definition. Let (X, A, m) and (Y, B, m,) be two measure spaces
a map f:X - Y is said to be measure preserving if m (f~! (B)) = m, (B)
for all B¢ B. f is an invertible measure-preserving map if it is 1—1
onto measure-preserving map and -1 is also measure preserving map,
f is an automorphism of measure space (X ,A, m).

If £ is 1—1 map of the space X onto itself such that for all Ac A we
have f(A), -1 (A) ¢ A and m (A) = m (f(A)) = m (f-1 (A)).

The measure m is said to be a f-invariant measure for the automorphism
£(X, A, m, f) is cailed a dynamical system. If X is a compact metric
space then the (X, A, m, f) is known as a topological dynamical system.
2.2. Definition. Suppose {fi}y is a one-parameter group of automorp-
hism of the measure space (X, A, m) for all t;, tre R, x e X

i) fy ofiy(x) = fiy.42 (x)

ii) If for any measurable function ¢ (x) on X the function o (fix) is me-
asurable on the cartesian product X x R then
{fi}icr is said to be flow

F = {ft}icp is a measure-preserving flow if m(FA) = m (A) for all

meM(X,F)= n M(X,f) if for all Ac A, lim m (ftA A A) =
teR

t>w
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= 0 then F = {f} is said to be continuous flow, (X, A, m, {fiher) 18
called a dynamical system with continuous time and will be expressed

as (X, {ft}).

Suppose (X, A. m {f;}i.g) is a dynamical system {ft}ig is said
to be measurable flow, if for Ac¢A all tc R and xc A fix is an
element of A. Let F = {fi}i.g and G = {gi}ip be flows defined on
X and Y respectively. Let m:X — Y be a surjective continuous and me-
asure-preserving map. If for every teR and xeX.

moF(x) = Go n(x) then
Dynamical system (Y, {g:}) is said to be a factor of dynamical system
(X, {ft}).

F == {fi}tc flow is called ergodic flow if for every teR and AcA
F(A) = A m(A) =0 or m(A) = 1.
2.3. Proposition. If {fi}i.g is an ergodic flow then its factor is also er-
godic. ) -

Proof: Let B ¢ B be G-invariant set. Then by property of a factor F(=1
(B)) = n1G(b). Since B is an G-invariant set from this equality we
obtain F (71(B)) = =~1(B). This implies that B is an F-invariant set.
Since B is an ergodic set, m (7~1(B)) = 0 or m(~1(B)) = 1. Since =
is a measureé-preserving map, m(7~1(B)) = mg(B) follows. From the
last equality mo(B) = 0 or my(B) = 1. This implies that G is an er-
godic flow.

2.4. Proposition. If {an}p>; satisfies ay > 0, an,m > an -+ am every

. a . .o @
m, n then lim =2 exists and equals to inf — [7].
n->m n

3. RELATIVE ENTROPY FOR A FLOW

3.1. Proposition. Suppose P is a finite measurable partition of X and
¢y denotes the partitions of Y into points. Then

B S T | .
fim - Hy ( V FP |1 (ey)> exists.
i—g -

n->w0

n-1
Proof: By lemma 2:4 if we take ay = Hp ( V P | n“l(sy)) , the
i=0

result is obtained.
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3.2. Definition. Let P be a finite partition and Hp(P) < 00 We define
the limit which is obtained from prop. 3.1 as follow :

by (fy | gt P) = lim i

i
nowe 1

n—1 .
Hy, ( VORP [n )
i:o .

the following ‘function, '

b (£ [ gt) = sap thm (fy | ge P)}. ,
is called the relative entropy of dynamical system with continuous time
where the supremum is taken over all finite partitions of X.

3.3. Proposition. SBuppose P, Q are two finite measurable partitions
of X for all t=R :

i) b (fr 1 gt Pv Q) < hm (£ | go, P) + b (£t | g4, Q)

the equality takes place if the partitions P and Q are independént,.
ii) hy (£ | gt) < bm (f; | g1, Q) ifP<Q

i) b (£ | g6 P) < hm (f1 | g6, Q) + Hu (P | Q v ! (ey))
Proof. By (iii) of proposition 1.4

n—1 n—1 n—1{ ' oy
Hp, ( V FiPv V FiQ ;n—i(sy)) < Ha ( v FiP|7r—1(sy))
i=0 i=Q i=p

+ (V) FQ )

dividing the above by n > 0 and taking the limit for n - oo by Propo-
sition 3.1, for every teR

hin(fy | g, PvQ) < hu(fy | gt, P) + hyy (£} | gt, Q) the result is obtained.

n_i n-1 :
ii) If P<Qthen V FiP < V FjQ. Therefore
i=0

i=0
n-1 n--1
Hp ( V FP | nt (ey)) < Hy ( V FQ Iﬂ:_l(ey)) using, Propo-
i=( i=Q

sition 3.1
Hence hp, (f; | gt, P) < hm (f; | g1, Q)
iii) By (1), (4) and (8) of Proposition 1.4

n_1 n_t n_t .
Hin ( V FP |t (sy)> gHm( V FPv V FQ |1 (ey))
i=p ‘ i=p i=0
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n-1

. n-1 n_1 —
Ho (¥ FQ |71 () + Ha (V. FP |V ROVl ()
. i=Q i=() i=0
dividing by n > 0 both sides,

1 n—1 1 n=l
— Hp ( vV FQ | =l (ay)) + = Hp (Fi P | Qv =l ()
n 1=0 n i=Q

n—1

= o (V EP w1 ) & Ha(® [ Qv o)

i

i

0

taking limit for n -
ho (£ | g6, P) < b (fi | g, Q) + Hm (P | Qv nt (ey)

3.4. Theorem. Suppose (Y, {gi}) dynamical system is a factor of (X,
{fi}) dynamical system. Then for all teR.

hm(ft !gt): |t lhm(fig)

Proof: Assuming t >> 0 we shall first prove tha 0 < u < t implies

t
hm (ft ] gt) = Tl— tm (fu ! gu)

Suppose k is a positive integer § = s and P is definite partition

k

of space X and ¢y is a partition of Y into points.
Put Q = Pvfs, Pvlysy Pv ... vg_psu P

further fix a positive integer n and denote by 1 =1 (n) some natural
number such that nt <lu << (n + 1)t for p = 1, 2, ..., n denote by
r(p) .the natural number satisfying r (p) du < pt < [r (p) + 1]8u
by (ft | gt) = sup hy (fy | gt, P) by definition 3.2

p

n-1
b (£ | g6 P) — lim _111_ Hi, ( V £y P |l (sy)) by proposition
i=Q

n—+w

3-1 using the properties of the entropy of a partition we can write

n
Hy ( YV £y P |t (sy)) = Hyp (P v P v o £y P inl(ey)
i=1
< Hp (Qv Qv .. viy Q@ | w7l (gy)) + Hp (£ Pv ... v P | Qv £,Qv...

vdyy Q v L (gy)). Therefore
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Hn, ( i fi, P | oL (sy)) = Hu (Q v Qv v £y Q | 7 (sy) +

Hy [fiPv ... vi P | PvPv..v faenu Pv o fluPvav
flup_nu (P) v =71 (gy)] is obtained.

In fact lu + (k — 1) §u = (k (14+1) — 1) Su

n
Hp, ( V £y P |l (sy)) < Hin (Qv £4 Qv oo v £50 Q | 571 (g)) +
i=1

Ho (4 Pv .. vin P [ Pvfsy Pv . v neulP v vEiu Pv.v
frein-nsu Pval(ey)) < Hm [Q v £ Q v oo v £14 Q [ 7i(zy)

n
+ 21 Hy (fpt P | fr(pysu Pyl (ey) ]
=

is obtained. But
Hm (fpt P | frpysu Pv nliey) = Hp (fP | P v ol (gy))
where s = pt — 1 (p) 3u < Su

choose an arbitrary ¢ >> 0 Since the flow {f;} is continuous
lsim m (f5 AAA) = 0. Therefore for any sufficiently small § > 0
-0

we have the inequality Hy (fs P | Pv 1 (gy)) < ¢
therefore we get

Hp (£ Py .. vt P | ol () = Hp (Qv oo v fiimyu Q | 71 (gy)

-+ ne lim k(n)
n-ow n

_t
= —,
the last inequality implies

) 1 t .. 1
lim - Hy (fiPv .. v P 17l (gy)) < — lim W H, (Q

n-w U poeo

Vo VEmuQ |7l (g)) + ¢

Since ¢ was arbitrary we get

b (ft | g0) = ~— b (fa | gu)

coe s s t
Now suppose the positive integer r satisfies — < u therefore
r
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u

hy (fu | gu) = — I b (ferr | gtpr) = T"‘t}i by (fi/r | gtre)

. , 1 \
Since by (fir | gip) = - hy (fy | gi) we get
u .
hy (fy | g80) < - hy (ft [ go) iee.

1
hy (fy | gt) = - bm (f | g1)

i .
hence hy, (fy | g¢) = o (fi | g
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