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ABSTRACT

The solutions of the differential equation 2yy’’ = y"? — 4q(x)y? + c are expressed in terms
of solutions of the equation u’’ + g(x)u = 0 for different values of the constant c.

INTRODUCTION

Mathematical investigations of natural phenomena generally lead
to nonlinear differential equations*. If most of these phenomena are
not understood at present, the reason mainly lies in the fact that ge-
neral methods for solving nonlinear differential equations are not known
yet. For this reason it is important to establish some connections bet-
ween linear and nonlinear differential equations.

It is well known that any homogenous linear differential equation
of the second order can be reduced to the canonical form

u” gx)u = 0 (1)

If ui, u, are solutions of (1), then

—— @
satisfies the nonlinear differential equation

2yy" = y* — 4q(x)y> + ¢ 3)

for certain values of the constant ¢. In fact, substituting (2) and its de-
rivatives in (3) we have '

(uuy’ —ui'ug)2 4 ¢ = 0.

* Concerning the theory of nonlinear differential equations. See, for instance [1], [2], [3] and
[4].
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Hence (2) is a solution to (3) if and only if

c = — W (4)
with W(uy,u;) denoting the Wronskian of u;,u.:

W(usus) = ww's — 'y us = W,. )

The purpose of the present work is to investigate the two-para-
meter solutions of (3) for different values of ¢, with the assumption
that q is real-valued.

SOLUTIONS OF EQUATION (3) FOR DIFFERENT VALUES
OF THE CONSTANT ec.
Case I: ¢ = 0

Let u = cqu; -+ couz be the general solution of (1). Then u and u
are (linearly dependent) solutions and Wi{u,u) = (cic2—e1c2) Wy =0
so that the two-parameter solution of (3) reads

y = u.u = u? = (cyu + cauz)2 (6)
In fact, the transformation y = u? in (1) at once gives
2yy" = v — Aq(x)y2 (7)
Case II: ¢ < 0 and ¢ = — W7,
The solutions of Eq.(3) are of the form
y = (amw: + axuz) (b + bouy) (8)

where a1, a2, b1, b, are arbitrary (not necessarily independent) constants.
The factors occurring in (8) are linearly independent if and only if

atb, — ab; # 0. (9)

By (9), a1 # 0 or a; # 0 so that we can set a; = 1 without loss of
generality. Then (8) takes the form

y = (u; + cuz) (cur + cuu). (10)
Then Wronskian of ui + ¢ius and cu; 4 cyu, is

Wz = (03 _ 0102) Wo. (11)
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It then follows that the expression (10) satisfies (3) if

sz + ¢c =0
From (11) and (12) we have
W2, = — (c;—¢6,)’ ¢ = — ¢
and so
¢, = ¢cc, + 1 =Kk, (13)

Accordinly, the two-parameter solution of (3) is of the form
y = e’ + (k, + ¢,0) uu, + eku? (14)
Case IIl: ¢ << 0 and ¢ # — W?,

In this case (12) becomes

W2, = (c;—c,c,)* W2 = — ¢ .
This gives
1 -
03 =S 0102 :}: '—“]0_ ’\/ — ¢ = kz. (15)

Now the two-parameter solution of (3) can be expressed as
y = eaug?2 + (ka + cie2) wuz + cikoua? (16)
Moreover, let
vi = auy, v2 = Buz ||+ [B] # O. 17)

One can choose «,3 such that W(vy,v,) = 1. With this choice ¢,
becomes

¢, = ¢z - / — ¢ =k, , (18)
and the two-parameter solution of (3) takes the from
y = ¢;v* + (k; + cpc,) v,v, + ckvi, (19)
Case IV: ¢ > 0

Let us examine if Eq. (3) may admit of real-valued solutions for
¢ > 0. By (11), we now have

W2, = (e;—c,0, )W = — ¢, ¢ > 0
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This gives

1
Wo

1
Wo

Ve = oo £~ ik @)

Accordinly, the two-parameter (complex) solution of (3) is
y = ¢ + (k, + ce)uu, + cku’,. (1)

Putting ¢1 = a1-+i B1, €2 = a2z + 1 B2, (4, B13 &2, B2 veal) we may
write (21) as

y = g, + 2o, — 80, + [mor, ) —8, (21 ) ]
e [+ ) = 3] e+ [ — )+

cxl(Zcsz; + %)] u?,}.

The vanishing of the imaginary part in the above equality yields

1 —
B = 0, 2a28; + 4/ ¢ = 0. (22)
Wo
This implies
«1 arbitrary, B = + —27\/%— s o2 # 0, B2 =0. (23)
2 [v]

If (23) is satisfied, the solution is real, and can be expressed as

y = au1? + 2001 %2 Uid2 + (ouz oz -+ TCV_VT) u;2, (24)
2 ]

Case V:Im ¢ # 0

If y is real, Eq. (3) implies Imc = 0. Hence Eq. (3) has no real -
valued solution for Ime¢ # 0.

EXAMPLES

Example 1. 2yy" = y? — (x + 1)7y*—1. (25)

This equation is of the type (3) with q(x) = 1 (x 4 1)72,¢ =
— 1. The associated linear equation reads

v+ x4+ 1)2u=0, (26)
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with the linearly independent solutions

u; = (x—]—l)%, u; = (x—{—l)% In (x+-1).

Presently W, = 1, and so W, = — ¢. By (14) the real -valued solution
is

y = ¢, (x+1)+(k,+c,c,) (x+1) In (x+1)+ck, (x41) In* (x-1). 27

Example 2. 2yy”’ = y’2 + 8 x—2y2 4 c. (28)
Comparison of (28) with (3) yields q(x) = —2x~2. The correspon-

ding linear equation is
u’ — 2x 20 = 0. (29)

It has linearly independent solutions
u; = x4, u; = x2
with the Wronskian W, = 3.
(i) If ¢ = 0 the solution is, by (6),
y = (¢, x' +¢,%x), x #0

(i) If ¢ = — 9 we have W2 = — ¢. By (14) the solution is of
the form

y = ex72 4+ (ki 4+ eic2) x - cikixt, x # 0.

(iii) If ¢ < 0 and ¢ # —9, then by (16) the solution reads y = c,x~2
+ (kz + 01C2) Xi + Clkz X4, X # 0.

(iv) If ¢ > 0, by (24) the solution becomes
Y = ax 2 4 2o00000%x + (O(lzotz+ —%%) x4,

Example 3. 2yy"” = y? + (4¢®™ + Dy2 4+ ¢, ¢ < 0. (30)

1

In the present example, q(x) = — (eZX + T) , and so the

associated linear equation is

w — (ezx + _i_) — (31)
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Putting z = eX, this equation becomes

dzu 1 du 1
1 + 3 o (1 + i ) u=0. (32)

The change u = z~'/2 v transforms (32) into

d2v
dz2

From the above relations it is easily found that

— (1 — (1 _
u = e (2X+ex),uz=e G x e%)-
The Wronskian of ui, uz is W, = 2.
(i) ¢ = —4. Presently ¢ = —W,2 so that by (14) the solution of
(30) is
v = e e———(x + 2ex) + o+ 0102)e—x T edky e—(x—Zex).

(if) ¢ < 0, ¢ # —4. In this case, by (16) the solution of (30) is of
the from

—(x—2¢%)

c2 e_(X + 2e%) + (k2 + clcz)e_x 4+ Ciks e .
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