Commun. Fac. Sci. Univ. Ank. Series A₁ V. 38, pp 115-125 (1989)

THE DRALL AND THE SCALAR NORMAL CURVATURE OF (r+1)-DIMENSIONAL GENERALISED RULED SURFACES

MAHMUT ERGÜT

Fırat Üniversity, Dept, of Math. 23119 Elazığ, TURKEY

SUMMARY

In this paper, we obtain some relationships between curvatures of (r+1)-dimensional generalised ruled surfaces. We also calculate the drall of a generalized ruled surface when the base curve is taken as an orthogonal trajectory of the generated spaces.

INTRODUCTION

All manifolds, maps, vector fields etc. will be assumed smooth. Let E^n be n-dimensional Euclidean space and M a submanifold of E^n . Let \overline{D} denote the standard Riemannian connection of E^n and let \overline{D} denote the Riemannian connection of M. For any vector fields X,Y on M we have the Gauss equation.

$$\bar{\mathbf{D}}_{\mathbf{X}}\mathbf{Y} = \mathbf{D}_{\mathbf{X}}\mathbf{Y} + \mathbf{V}(\mathbf{X},\mathbf{Y}) \tag{1.1}$$

where $D_X Y$, V(X,Y) are respectively the tangential, normal components of $\bar{D}_X Y.V$ is called the second fundamental form of M. We also have the Weingarten equation giving the tangential and normal components of $\bar{D}_X \xi$, where ξ is a normal vector field on M,

$$\bar{\mathbf{D}}_{\mathbf{X}}\xi = -\Lambda_{\xi}(\mathbf{X}) + \mathbf{D}_{\mathbf{X}}\mathsf{L}\xi \tag{1.2}$$

Let X,Y be vector field on M, ξ a normal vector field and \langle , \rangle the standard metric on Eⁿ. From (1.1) we have

$$< \bar{D}_X Y, \xi > = < V(X,Y), \xi >$$
 (1.3)

and then (1.2) implies

$$=$$
 (1.4)

Let $\{\xi_1,\ldots,\xi_{n-m}\}$ be an orthonormal basis of $\chi^{\perp}(M)$, the space of normal vector fields on M. Then there exist smooth functions $V^j(X,Y)$ $(j=1,\ldots,n-m)$ from M into R such that

ISSN 02571 - 081 A.Ü. Basımevi

MAHMUT ERGÜT

$$V(X,Y) = \sum_{j=1}^{n-m} V^{j}(X,Y)\xi_{j}$$
(1.5)

and furthermore we may define the mean curvature vector field H by

$$H = \sum_{j=1}^{n-m} (\text{trace } A_{\xi j}/m)\xi_j \qquad (1.6)$$

and the mean curvature function as ||H||. At a point $p \in M$, H(p) is called the mean curvature vector and ||H(p)|| the mean curvature at p[1].

If, for each $p \in M$, H(p) = 0, then M is said to be minimal [1].

Let ξ be a unit normal vector, then the Lipschitz-Killing curvature in the direction ξ at the point $p \in M$ is defined by [2]:

$$G(\mathbf{p},\boldsymbol{\xi}) = \det A_{\boldsymbol{\xi}}(\mathbf{p}) \,. \tag{1.7}$$

The Gauss curvature is defined by

$$G(p) = \sum_{j=1}^{n-m} G(p,\xi_j)$$
 (1.8)

and if G(p) = 0 for all $p \in M$, we say M is developable. In particular, if the Lipschitz-Killing curvature is zero for each point and each normal direction, then M is developable.

Following [3], we define M(A) for any symmetric matrix $A = [a_{ij}]$ by

$$\mathbf{M}(\mathbf{A}) = \sum_{\mathbf{i},\mathbf{j}} (\mathbf{a}_{\mathbf{i}\mathbf{j}})^2.$$
(1.9)

Let l be an open interval and α : $I \rightarrow E^n$ a curve in Euclidean space. For each $t \in I$, let $\{e_1(t), \ldots, e_r(t)\}$ $(1 \le r \le n-2)$ be an orthonormal set of vectors spanning the r-dimensional subspace $W_r(t)$ of $T_{\alpha(t)}E^n$. We have

$$\langle \mathbf{e}_{\mathbf{i}}, \mathbf{e}_{\mathbf{j}} \rangle = \delta_{\mathbf{i}\mathbf{j}} \quad (\mathbf{i}, \mathbf{j} = 1, \dots \mathbf{r})$$

$$(1.10)$$

and denoting by \dot{e}_i the derivative of the vector field e_i along the curve α ;

$$\langle \dot{e}_{i}, e_{j} \rangle + \langle e_{i}, \dot{e}_{j} \rangle = 0$$
 (i,j = 1,...r) (1.11)

We may define an (r+1)-dimensional submanifold M of Eⁿ as follows.

116

Definition 1.1.

Let α , $\{e_i\}$ be as above and define φ : $IxE^r \rightarrow E^n$ by

$$\varphi(\mathbf{t},\mathbf{u}_{1},\ldots,\mathbf{u}_{r}) = \alpha(\mathbf{t}) + \sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{e}_{i}(\mathbf{t}) \qquad (1.12)$$

for all $(t,u_1,\ldots,u_r) \in IxE^r$. Let $M = \phi(G)$ where $G = IxE^r \subseteq E^{r+1}$. Note that

$$\operatorname{rank}(\varphi_{t},\varphi_{u_{1}},\ldots,\varphi_{u_{r}}) = \operatorname{rank}(\alpha(t) + \sum_{i=1}^{r} u_{i}e_{i}(t), e_{i}(t), \ldots, e_{r}(t)) = r + 1$$

so M is an (r+1)-dimensional submanifold of Eⁿ. We call M an (r+1)-dimensional generalised ruled surface. The curve α is called the base curve of the generalised ruled surface and the subspace $W_r(t)$ is called the generating space (or briefly, the generation) at the point $\alpha(t)$ [4].

Definition 1.2.

The subspace A(t) given by

$$A(t) = Sp \{e_1(t), \dots, e_r(t), \dot{e}_1(t), \dots, \dot{e}_r(t)\}$$
(1.13)

with dimension dim A(t) = r + m, $0 \leq m \leq r$, is said to be the asymptotic bundle of the generalised ruled surface.

 $W_r(t)$ is a subspace of A(t) and, using the Gram-schmidt orthogonalisation process, basis of the form:

$$\{e_1(t), \ldots, e_r(t), a_{r+1}, \ldots, a_{r+m}\}$$
 (1.14)

may be found. Then there exist b_{ij} , c_{ik} such that

$$e_i = \sum_{j=1}^r b_{ij}e_j + \sum_{k=1}^m c_{ik}a_{r+k}, (i = 1 \dots r),$$
 (1.15)

with $b_{ij} = -b_{ji}$ by (1.11). The basis $\{e_1(t), \ldots, e_r(t)\}$ of $W_r(t)$ uniquely determines the basis of the asymptotic bundle of a generalised ruled surface and $\{e_1(r), \ldots, e_r(t)\}$ is called the natural carrier basis of $W_r(t)$ [4].

Now let
$$\eta_{m_{+1}} = < \alpha_r(t), a_{r_{+}m_{+1}} >, K_k = < \dot{e}_k(t), a_{r_{+}k} > \text{for } k = 1, ..., m,$$

so that
$$\dot{e}_i = \sum_{j=1}^r b_{ij}e_j + K_i a_{r+i}, (1 \le i \le m, K_i > 0), \dot{e}_i = \sum_{j=1}^r b_{ij}e_j$$

 $(m < i \le r)$. We now define the following:

$$\delta_{\mathbf{k}} = \eta_{m_1} / \mathbf{K}_{\mathbf{k}} \ (\mathbf{k} = 1, \dots, \mathbf{m})$$
 (1.16)

and note that each δ_k is invariant under a reparameterisation $t \rightarrow t^*$ with $dt/dt^* > 0$. δ_k is called the kth principle drall (principal distribution parameter) of M lying in $W_r(t)$ [4]. The drall (distribution parameter) of M is defined by

$$\delta = |\delta_1 \dots \delta_m|^{1/m} \tag{1.17}$$

We remark that the k^{th} principle drall and the drall are equal for a ruled surface with m = 1 in E^3 .

ON THE CURVATURES OF GENERALISED RULED SURFACES

Let M be an (r+1)-dimensional generalised ruled surface and s the arc length parameter of the curve α . Let $\{e_1(s), \ldots, e_r(s)\}$ be an orthonormal basis of the generating space $W_r(s)$. Let us choose the base curve α to be an orthogonal trajectory of the generating spaces $W_r(s)$. M is given by

$$\varphi(\mathbf{s},\mathbf{u}_1,\ldots,\mathbf{u}_r) = \alpha(\mathbf{s}) + \sum_{i=1}^r \mathbf{u}_i \mathbf{e}_i(\mathbf{s}), \ \mathbf{u}_i \in \mathbf{R}$$
(2.1)

Let $\{e_0, e_1, \ldots, e_r\}$ be a (local) orthonormal basis of the space of vector fields $\mathcal{X}(M)$ and let us choose $e_0 = \varphi^* (\partial/\partial s)$. By (2.1),

$$\varphi_{s} = \dot{\alpha}(s) + \sum_{i=1}^{r} u_{i} \dot{e}_{i}(s), \ \varphi_{u_{i}} = e_{i}(s) \qquad (2.2)$$

then

$$\bar{\mathbf{D}}_{ei}e_{j} = 0 \ (i,j = 1,...,r)$$
 (2.3)

and using (1.1),

$$V(e_i,e_j) = 0$$
 (i,j = 1,...,r) (2.4)

and since $\bar{D}_{e_i}e_0 \perp e_j$ and $\bar{D}_{e_i}e_0 \perp e_0$ (for each i,j), then

$$\bar{D}_{e_i}e_0 = V(e_i,e_0) \ (i=1,\ldots,r)$$
 (2.5)

Let $\{\xi_1,\ldots,\xi_{n-r-1}\}$ be an orthonormal basis of normal vector fields. Then $\{e_0,e_1,\ldots,e_r,\xi_1,\ldots,\xi_{n-r-1}\}$ gives a basis of $T_{\phi}E^n$ for each point $p \in M$. Let us write

118

$$\bar{D}e_{0}\xi_{j} = a^{j}_{00}e_{0} + \sum_{t=1}^{r} a^{j}_{0t}e_{t} + \sum_{q=1}^{n-r-1} b^{j}_{0q}\xi_{q} \ (j=1,...,n-r-1)$$
(2.6)

$$\bar{D}e_{i}\xi_{j} = a^{j}{}_{oi}e_{o} + \sum_{r=1}^{r} a^{j}{}_{it}e_{t} + \sum_{q=1}^{n-r-1} b^{j}{}_{iq}\xi_{q} \ (i=1,...,r)$$

Where the a_{it}^{j} are coefficients of the matrix of $A_{\xi_{j}}$:

$$A_{\xi_{j}} = - \begin{vmatrix} a_{j_{00}} & a_{j_{01}}^{j} & \dots & a_{j_{1r}}^{j} \\ a_{j_{01}}^{j} & a_{j_{11}}^{j} & \dots & a_{j_{1r}}^{j} \\ \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{j_{0r}}^{j} & a_{j_{r_{1}}}^{j} & \dots & a_{j_{rr}}^{j} \end{vmatrix} (j=1,\dots,n-r-1)$$
(2.7)

This matrix simplifies since, using (2.6), $\langle \bar{D}e_ie_t, \xi_j \rangle = -a^{j}{}_{it}$ (i,t= 1,...,r;j=1,...,n-r-1), and then by (2.3), $a^{j}{}_{it}=0$, and now we may write (2.7) as

$$A_{\xi_{j}} = - \begin{vmatrix} a_{j_{00}}^{j_{00}} & a_{j_{01}}^{j_{01}} & \dots & a_{j_{0r}}^{j_{0r}} \\ a_{j_{01}}^{j_{01}} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{j_{0r}}^{j_{0r}} & 0 & \dots & 0 \end{vmatrix}$$
(2.8)

furthermore, (2.6) and (1.4) lead respectively to the relations:

$$<\!\bar{\mathbf{D}}_{e_i}e_o,\xi_j\!>=\!-\mathbf{a}^{j}_{oi},\;(i\!=\!1,\ldots,\!r;j\!=\!1,\ldots,\!n\!-\!r\!-\!1)$$

and

 $<\!\!V(e_i,e_o),\xi_j\!>=<\!\!A\xi_j(e_i),\!e_o)\!\!>=\!\!-a^j{}_{0i},\;(1\!\le\!i\!\le\!r;\;1\!\le\!j\!\le\!n\!-\!r\!-\!l),$ and therefore, by (1.5) and (2.5);

$$V(e_i e_0) = \bar{D}_{e_i} e_0 = - \sum_{j=1}^{n-r-1} a^{j}_{0i} \xi_j \ (i=1,...,r)$$
(2.9)

Now let X,Y be vector fields on the m-dimensional Riemannian manifold M whose curvature tensor field is R. As in [6] we have

$$< X, R(X,Y)Y > = < V(X,X), V(Y,Y) > - < V(X,Y), V(X,Y) > (2.10)$$

where V is the 2^{nd} fundamental form of M embedded in E^{n} .

119

MAHMUT ERGÜT

Definition 2.2.

Let M be any m-dimensional Riemannian manifold with curvature tensor R. Let $\{e_1, \ldots, e_m\}$ be an orthonormal basis of T_pM , $p \in M$. Then the Ricci curvature tensor field S is defined by (see [7]):

$$S(p):T_pMxT_pM \rightarrow R; (X,Y) \rightarrow S(p)(X,Y) = \sum_{i=1}^m \langle R(e_i,X)Y, e_i \rangle$$
(2.11)

The scalar curvature of M is defined by ([7]);

$$\mathbf{r}(\mathbf{p}) = \sum_{i=1}^{m} S(\mathbf{p})(\mathbf{e}_i, \mathbf{e}_i)$$
(2.12)

or, by (2.11),

$$\mathbf{r}(\mathbf{p}) = \sum_{i=1}^{m} \sum_{j=1}^{m} \langle \mathbf{R}(\mathbf{e}_{j}, \mathbf{e}_{i}) \mathbf{e}_{i}, \mathbf{e}_{j} \rangle$$
(2.13)

In order to calculate the Ricci curvature of M in the direction of the vector fields $e_t(t=1,\ldots,r)$, we use (2.4), (2.9), (2.10) and (2.11) to obtain

$$S(e_t,e_t) = \sum_{j=1}^{n-r_{-1}} (a_{j_0t}), (t=1,...,r)$$
 (2.14)

and, for the direction e_0 ;

$$S(e_0,e_0) = - \sum_{t=1}^{r} \sum_{j=1}^{n-r-1} (a_{j_0t})^2$$
 (2.15)

so that, from (2.14) and (2.15),

$$S(e_0,e_0) = \sum_{t=1}^{r} S(e_t,e_t)$$

now we have proved the following:

Theorem 2.1.

Let $\{e_1, \ldots, e_r\}$ be an orthonormal basis of the generating space of the (r+1)-dimensional generalised ruled surface M and $\{e_0, e_1, \ldots, e_r\}$ an orthonormal basis of $\mathcal{X}(M)$. If the base curve of M is chosen as an orthonormal trajectory of the generating space, then the Ricci curvature in the direction of e_0 is equal to the sum of the Ricci curvatures in the directions of the vector fields forming a basis of the generating space.

By (2.12), the scalar curvature of the (r+1)-dimensional generalised ruled surface M may be expressed as

$$\mathbf{r} = \mathbf{S}(\mathbf{e}_0, \mathbf{e}_0) + \sum_{t=1}^{r} \mathbf{S}(\mathbf{e}_t, \mathbf{e}_t) = 2\mathbf{S}(\mathbf{e}_0, \mathbf{e}_0),$$

so we have the following corollary:

Corollary 2.1.

If an (r+1)-dimensional generalised ruled surface M has an orthogonal trajectory of the generating space chosen as base curve, then the scalar curvature of M is equal to twice the Ricci curvature in the direction of the vector field e_0 .

(2.15) may now be written in the following way:

$$\mathbf{r} = -2 \sum_{j=1}^{n-r-1} \sum_{t=1}^{r} (\mathbf{a}_{jot})^2$$
 (2.16)

and using (1.3), (1.4), (1.5), (2.6) and (2.8) we have:

$$V(e_{0},e_{0}) = \sum_{j=1}^{n-r_{-1}} (trace A_{\xi_{j}})\xi_{j}$$
 (2.17)

and now (1.6) gives;

$$H = (1/r+1) V(e_0,e_0)$$
.

If M is minimal then H is zero and so

$$V(e_0, e_0) = 0. (2.18)$$

We say that X_p , $Y_p \in T_p$ M are conjugate if V $(X_p, Y_p) = 0$, [5]. We have the following theorem:

Theorem 2.2.

Let $\{e_1, \ldots, e_r\}$ be an orthonormal basis for the generating space of an (r+1)-dimensional generalised ruled surface M, and let e_0 be a unit tangent vector field to the base curve, the letter taken to be an orthogonal trajector of the generating space of M. Then the ruled surface M is totally geodesic iff e_0 is conjugate to each vector e_i , $i=1,\ldots,r$. Proof:

 $\{e_0, e_1, \ldots, e_r\}$ is an orthonormal basis of $\chi(M)$ and for each X, Y $\in \chi(M)$ we may write

$$X=a_0e_0+\sum_{i=1}^{r}a_ie_i$$
, $Y=b_0e_0+\sum_{i=1}^{r}b_ie_i$

and then

$$V(X,Y) = a_0 b_0 V(e_0,e_0) + \sum_{i=1}^r (a_i b_0 + a_0 b_i) V(e_i,e_0) + \sum_{i=1}^r a_i b_i V(e_i,e_i)$$

$$(2.19)$$

If M is totally geodesic, then V is identically zero ([7]), so e_0 is certinly conjugate to e_i , $i=1,\ldots,r$.

:⇐

If $v(e_0,e_i)=0$ for i=1,...,r, then by (2.4) and (2.18), (2.19) reduces to V(X,Y)=0, and this completes the proof of the theorem.

If trace $A_{\xi_i} = -a_{00}^j$ from (2.8) is subsituted into (1.6) we obtain

$$(\mathbf{r}+1)^2 \|\mathbf{H}\|^2 = \sum_{j=1}^{n-r_{-1}} (a^{j}_{00})^2$$
 (2.20)

Definition 2.3.

Let $\{\xi_1, \ldots, \xi_{n-m}\}$ be an orthonormal basis of $\chi^{\perp}(M)$. Then the scalar normal curvature K_N of M is defined by ([3]);

$$K_{N} = \sum_{i,j=1}^{n-m} M(A_{\xi i}A_{\xi j} - A_{\xi j}A_{\xi i})$$
(2.21)

Theorem 2.3.

The scalar normal curvature of an (r+1)-dimensional ruled surface M is

$$K_{N} = 2 \left\{ \left[(r+1)^{2} \|H\|^{2} - (1/2)r \right]^{2} - \sum_{i,j=1}^{n-r-1} \sum_{k=0}^{r} a^{i}{}_{ot}a^{j}{}_{ok}a^{j}{}_{ot}a^{i}{}_{ok} \right\},$$
(2.22)

where $||\mathbf{H}||$ and r are the mean curvature vector field and scalar curvature of M respectively, and the a^{j}_{0k} 's are the elements of the matrix $A\xi_{j}$.

Proof:

We have (2.8)

$$A\xi_{i} = - \begin{pmatrix} a^{i}_{00} & a^{i}_{01} & \dots & a^{i}_{0r} \\ a^{i}_{01} & 0 & \dots & 0 \\ \ddots & \ddots & \ddots & \ddots \\ \cdot & \cdot & \ddots & \cdot \\ a^{i}_{0r} & 0 & \dots & 0 \end{pmatrix}$$

and similarly for A_{ξ_i} . We may now compute $A_{\xi_i}A_{\xi_j}$ — $A_{\xi_j}A_{\xi_i}$:

$$A_{\xi i}A_{\xi j} - A_{\xi j}A_{\xi i} = [b_{tk}] = [a^{i}_{0t}a^{j}_{0k} - a^{j}_{0t}a^{i}_{0k}]$$

$$(2.23)$$

(where t,k=0,1,...,r; i,j=1,...,n-r-1). Then by (1.9), we obtain

$$M(A_{\xi_{i}}A_{\xi_{j}}-A_{\xi_{j}}A_{\xi_{i}}) = \sum_{t,k=0}^{r} (b_{tk})^{2} = \sum_{t,k=0}^{r} (a_{0t}^{i}a_{0k}^{j}-a_{0t}^{j}a_{0k}^{i})^{2}.$$
(2.24)

 $(i,j=1,\ldots,n-r-1)$ and so, by (2.21);

$$K_{N} = \sum_{i,j=1}^{n-r_{-1}} \sum_{t,k=0}^{r} (a^{i}_{0t}a^{j}_{0k} - a^{j}_{0t}a^{i}_{0k})^{2}$$
(2.25)

and by expanding and using (2.16), (2.20) we complete the proof.

Corollary 2.2.

The scalar normal curvature of a minimal (r+1)-dimensional generalised ruled surface is given by:

$$\mathbf{K}_{N} = 2((\mathbf{r}^{2}/4) - \sum_{i,j=1}^{n-r-1} \sum_{t,k=1}^{r} \mathbf{a}^{i}_{0t}\mathbf{a}^{j}_{0k}\mathbf{a}^{j}_{0t}\mathbf{a}^{i}_{0k})$$

Proof:

For a minimal surface we have H=0 and so the corollary is clear.

Corollary 2.3.

For a totally geodesic (r+1)-dimensional generalised ruled surface, the scalar normal curvature is identically zero.

Proof:

M is totally geodesic implies V is identically zero and so A_{ξ_j} is the zero map for each $j=1,\ldots,n-r-1$.

Theorem 2.4.

Let M be an (r+1)-dimensional generalised ruled surface. Let the base curve α be an orthogonal trajectory of the generating space be parameterised by arc length. Then the kth principle distribution parameter is

$$\delta_k = (1 - \sum_{t=1}^{r} \eta^2_t)^{1/2} / (\|\bar{D}_{e_0} e_k\|^2 - \sum_{j=1}^{r} < \bar{D}_{e_0} e_k, e_j > 2)^{1/2}$$

 $(k=1,\ldots,m)$, and the distribution parameter (drall) is

$$\delta = (1 - \sum_{t=1}^{r} \eta^{2}_{t})^{1/2} / \prod_{k=1}^{m} (\|\bar{\mathbf{D}}_{e_{0}} e_{k}\|^{2} - \sum_{j=1}^{r} < \bar{\mathbf{D}}_{e_{0}} e_{k}, e_{j} > 2)^{1/2m}$$

$$(k=1,\ldots,m)$$

Proof:

Using (1.16) and (1.17) we obtain

$$\delta = \{ \| \dot{\alpha} - \sum_{j=1}^{r} \langle \dot{\alpha}, e_{j} \rangle e_{j} - \sum_{t=1}^{r} \langle \dot{\alpha}, a_{r+1} \rangle a_{r+1} \| \} / \{ \| \dot{e}_{k} - \sum_{j=1}^{r} \langle \dot{e}_{k}, e_{j} \rangle e_{j} \| \} \ (k = 1, \dots, m)$$

$$(2.26)$$

The base curve α is an orthogonal trajectory so $\langle \dot{\alpha}, e_j \rangle = 0$ for $j=1,\ldots,r$. Substituting

 $\langle \dot{\alpha}, e_j \rangle = 0$ (j=1,...,r) $\dot{e}_k = \bar{D}_{e_0}e_k$ and $\langle \dot{\alpha}, a_{r+1} \rangle = \eta_t$ (t=1,...,m) into (2.26), the desired result is obtained.

REFERENCES

- [1] KOBAYASHI, S. and NOMIZU, K., Foundations of differential geomerty, Vols. 1, II (1963) Interscience Publishers (John Wiley & sons), New-York.
- [2] THAS, C., Properties of ruled surfaces in the Euclidian space Eⁿ, Accelemice Sinica Vol. 6, 1, 133-142.
- [3] HOUH, C.S., Surfaces with maximal Lipschitz-Killing curvature in the direction of mean curvature vector. Proc. Amc. Maths. Soc. Vol. 35, 2, 537-542 (1972).

- [4] FRANK, H. und GIERING, O., Verallgemeinerte regelflachan. Math. Zelt. 150, 261-271 (1976).
- [5] FRANK, H., On kinematics of the n-dimensional Euclidean space. Contributions to geometry. Proceedings of the Geometry Symposium in Siegen. 355-342 (1978).
- [6] HACISALİHOĞLU, H.H., Diferensiyel geometri. I.U. Fen-Edebiyat Fakültesi yayınları, Mat.2, Malatya (1983).
- [7] CHEN, B.Y., Geometry of manifolds. Marcel Dekkar, New York, (1973).