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SUMMARY

In this paper, we obtain some relationships between curvatures of (r+ l)-dimensional
generalised ruled surfaces. We also calculate the drall of a generalized ruled surface when
the base curve is taken as an orthogonal trajectory of the generated spaces.

INTRODUCTION

Ali manifolds, maps, vector fields ete. will be assumed smootb.
Let E“ be n-dimensional Euclidean space and M a submanifold of E“.
Let D denote tbe Standard Riemannian conneetion of E’' and let D 
denote the Riemannian conneetion of M. For any vector fields X,Y on 
M we have the Gauss equation.

ÖxY = DxY + V(X,Y) (1-1)

where Y(X,Y) are respectively the tangential, normal components 
of Ö^Y.V is called the second fundamental form of M. We also have 
the Weingarten equation giving the tangential and normal components 
of where Ç is a normal vector field on M,

®X^ = - + Dx-L5 (1-2)

Let X,Y be vector field on M, a normal vector field and 
Standard metric on E”. From (1.1) we have

<DxY,^> = <V(X,Y), ?>

and then (1.2) implies

<V(X,Y),Ç> = <Aç(X),Y>

the

(1-3)

(1-4)

Let , Çn—m } be
mal vector fields on

an orthonormal hasis of /■‘•(M), the space of nor- 
M. Then there exist smooth funetions V''(X,Y)

(j=l,. . . ,n—m) from M into R such that
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V(X,Y) =
n_ın
S VJ(X,Y)2j 

1=1
(1.5)

and furthermore we may define the mean curvature vector field H by

H
n—m
S (trace 

j=*
(1-6)

and the mean curvature function as || H 1|. At a point peM, H(p) is called 
the mean curvature vector and || H(p) |i the mean curvature at p[l].

If, for eacb p e M, H(p) = 0, then M is said to be minimal [1].

Let be a unit normal vector, then the Lipschitz-Küling curvature 
in the direction at the point p e M is defined by [2 ]:

= detAç(p). (1.7)

The Gauss curvature is defined by

G(P) =
n-Hi
S G(p,Çj) 

1=1
(1.8)

and if G(p) = 0 for ali p e M, we say M is developable. In particular, if 
the Lipschitz-Küling curvature is zero for eacb point and eacb normal 
direction, then M is developable.

Following [3], V'e 
[aij] ijy

define M(A) for any symmetric matrix A =

M(A)= S (aij)\ (1-9)
1.3

Let 1 be an öpen interval and a: a curve in Euclidean space.
For eacb tel, let {ej(t),... ,er(t)} (l<r<n-2) be an orthonormal set
of vectors spanning the r-dimensional subspace Wr(t) of Ta(t)E’i. We 
have

= Sij (i,j = l,...r) (I-IO)

and denoting by ej the derivative of the vector field Cj along the cnrve a;

+ <eı,ej> = 0 (i,j = l,...r) (1-11)

We may define an (r+ l)-dimensional submanifold M of E^ı as follows.
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Definition 1.1.

Let a, {eı} be as above and define ip: IxEi’ E“ by

q)(t,Uj,.
r

.. ,Ur) = a(t) s Uiei(t)
1=1

(1.12)

for aU (t,Up. . .,Ur)e IxEr. Let M=<p(G) where G=IxEi'cEi’+'. Not e that

r
rank(cpj,ç„^,. • -’^Pur) = rank(a(t) + S uıeı(t), e/t),.. .,er(t)) = r + 1

1=1

so M is an (r+l)-dimensîonal submanifold of E”. We cali M an (r+1)- 
dimens’onal generalised ruled surface. The curve a is caUed the base 
curve of the generalised ruled surface and the subspace Wr(t) is called 
the generating space (or briefly, the generation) at the point a (t) [4].

Definition 1.2.

The subspace A(t) given by

A(t) = Sp {ej(t),. . .,er(t), e/t),.. .,er(t)} (1.13)

with dimension dim A(t) = r + m, 0 gm^r, is said to be the asympto- 
tic bundle of the generalised ruled surface.

Wr(t) İs a subspace of A(t) and, using the Gram-schmidt orthogo- 
nalisation process, basis of the form:

(1.14)

may be found. Then tbere exist bij,ci]£ such that

eı = S bijC] 
j=ı

nı
S Ci]iaı_|_]j, (i = 1 ... r), 

k=ı
(1-15)

■vvith bij = — bji by (1.11). The hasis (ej(t),... ,er(t)} of Wr(t) uni- 
quely determines the hasis of the asymptotic bundle of a generalised 
ruled surface and {ej(r),... ,er(t)} is called the natural carrier hasis of 
Wr(t) [4].

Now let 7]m+ı= <«r(t), ar+nı+,>, Kk= ar+k>for k=l,...,m,

so that ej
r
s bijej+Ki ar+ı, (1 < i < m. Ki 

1=1
0), eı =

r 
s 
j=ı
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(ın<i<r). We now define the following:

Sk — 7]mı /Kk (k— (1-16)

and note that each Sk is invariant under a reparameterisation t -> t*
with dt Idt* 0. 8k is called the k*** principle drall (principal distribu-
tion parameter) of M lying in Wı(t) [4]. The drall (distrihution parame­
ter) of M is defined by

m
I*-*!

We remark that the k*** principle drall and the drall are 
led surface with m = 1 in E’.

(1.17) 

equal for a ru-

ON THE CURVATURES OF GENERALISED RULED SURFACES

Let M be an (r-|-l)-dimensional generalised ruled surface and s the 
arc length parameter of the curve a. Let {ej(s),.. . ,Cr(s)} be an ortho- 
normal hasis of the geuerating space Wr(s). Let us choose the base curve 
a to be an orthogonal trajectory of the generating spaces W,(s). M is 
given by

?(s,Up... ,ur) = a(s) +
r
S uıeı(s), Ui e R 
i=ı (2.1)

Let {co, Sp...,Cı.} be a (local) orthonormal hasis of the space of 
vector fields Z(M) and let us choose Co = <p* (8 İ8s). By (2.1),

r
cps = (x(s) + S Uieı(s), (p„. = eı(s)

i=ı
(2.2)

then

DeıCj = 0 (i,j = l,...,r) (2.3)

and using (1.1),

V(ei,ej) = 0 (i,j = l,...,r) (2.4)

and since DejCo ± ej and ÖgjCf, A Co (for each i,j), then

DeiGo = V(eı,eo) (i=l,...,r) (2.5)

Let (Çp. . . ,^n_r_ı } be an ortbonormal hasis of normal vector
fields. Then {eo,ep.
point p e M. Let us write

. . ,er,Çp... îŞn-r-ıf gives a hasis of T^E" for each
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—a'ooeo
r
2i ajct^t + 

t=ı

n-r-ı 
L

q=ı
b-'ogU (İ = l,-• - iı—r—1)

(2.6)

—a^oiCo 4"
r
2 ahtet + 

r=ı

n_r-ı 
E 
q=ı

6^Iq^q (İ=l,...>r)

Where the aht are coefficients of the matrix of Açj:

Açj

a^oo 
a^oı

ahi 
ahi

a^or 
ai,r

ahr ahi a^rr I

(j = l,. • .,n-r~l)

This matrix simplifies since, using (2.6), <DeiCt, ah t (i,t=
1,.. .,r;j = l,.. .,n—-r—1), and then by (2.3), aht=O, and now we may 
write (2.7) as

af00

Ar
a^oi

a^oi 
0

a^or 
0

i;j (2.8)

a.’or O O furthermor

furthermore, (2.6) and (1.4) lead respectively to the relations:

<De;eo,^j =—aioi, (i = l,. . .,r;j = l,.. .,n—r—1)

and

<V(eı,eo),Çj

and therefore, by (1.5) and (2.5);
= <AÇi(ei),eo)>=—aJ'oi, (l<i<r; l<j<n—r—1),

V(eieo) = Dejeo
n—r_l 

E 
j=ı

a^oi^j (i=l,...,r) (2.9)

Now let X,Y be vector fields on the m-dimensional Riemannian ma- 
nifold M whose curvature tensor field is R. As in [6] we have

<x,R(X,Y)Y> = <y(X,X),y(Y,Y-)>—<y(x,'Y),y(x,-Y)> 

where V is the 2“** fundamental form of M embedded in E”.

(2.10)
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Definition 2.2.

Let M be any m-dimensional Riemannian manifold with curvature
tensor R. Let {c,,.. be an orthonormal basis of TpM, p e M. Then
the Ricci öurvature tensor field S is defined by (see [7]):

m
S(p):TpMxTpM->R;(X,Y).^S(p)(X,Y) = S <R(eı,X)Y,eı 

1=1
(2.11)

The scalar curvature of M is defined by ([7 ]);

m
r(p) = S

i=l
S(p)(eı,eı) (2.12)

or, by (2.11),

m
Sr(p) =

m 
S 
i=ı

R(ej,ei)eı,ej.e,- (2.13)

In order to calculate the Ricci curvature of M in the direction of the 
vector fields et(t=l,.. .,r), we use (2.4), (2.9), (2.10) and (2.11) to 
obtain

S(et,et) =
n-r^ı

S (alot), (t=l,.. .,r) 
j=ı

(2.14)

and, for the direction Co;

r
^(^Oî^o) — S

t=l

n-r-ı
S (a^ot)' 
j=‘

,2 (2.15)

so that, from (2.14) and (2.15),

r
S(eo,eo) == S S(et,et)

t=l

now we have proved the following:

Theorem 2.1.

Let (cp... ,e.r} be an orthonormal hasis of the generating space of
the (r-|-l)-dimeusional generalised ruled surface M and (eo,Cj,. . . ,er}

an orthonormal basis of Z(M). If the base curve of M is chosen as an 
orthonormal trajectory of the generating space, then the Ricci curva- 
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türe in the direction of Cp is equal to the sum of the Ricci curvatures in 
the directions of the vector fields forming a basis of the generating spa­
ce.

By (2.12), the scalar curvature of the (r4-l)-dimensional generali­
sed rjıled surface M may be expressed as

r
r=S(ep,eo) + 2 S(et,et) = 2S(eo,eo), 

‘=1

so we have the foUovving corollary:

CoroUary 2.1.

If an (r-)-l)-dimensional generalised ruled surface M has an ortho- 
gonal trajectory of the generating space chosen as bass curve, then the
scalar curvature of M is equal to twice the Ricci curvature in the di-
rection of the vector field e.■O'

(2.15) may now be written in the following w ay;

r = — 2
n-r-ı 

S
j-1

S (a3pt)^ (2.16)^2

and using (1.3), (1.4), (1.5), (2.6) and (2.8) we have:

V(eo,eo) =
n_r-ı

S (trace 
]=ı

(2.17)

and now (1-6) gives;

H = (1/r+l) V(ep,ep).

If M is minimal then H is zero and so

V(eo,eo) = 0. (2.18)

Ve say that Xp, Yp e Tp M are conjugate if V (Xp, Yp) = 0, [5]. We 
have the following theorem:

Theorem 2.2.

Let {e.1’ • . .,er} be an orthonormal basis for the generating space
of an (r4-l)-dimensional generalised ruled surface M, and let Cp be a unit 
tangent vector field to the base curve, the letter taken to be an ortho­
gonal trajector of the generating space of M. Then the ruled surface M 
is totally geodesic iff Cp is conjugate to each vector ej, i=l,.. .,r.
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Proof:

(eo,e,,.. . ,er} is an orthonormal basis of Z(M) and for each X,Y 
e Z(M) we may write 

and then

r
X=aoeo 4- Y

1=1
HjCi , Y—boBo 4“ s bıCj

1=1

V(X,Y)=aoboV(eo,eo) + Y (aibo+aobı)V(eı,eo) + S aibıV(ei,ei)
1=1 1=1 (2.19)

If M is totally geodesic, then V is identically 
tinly conjugate to ej, i=l,...,r.

zero ([7 ]), so Cg is cer-

ces
If v(eo,ei) = 0 for i==l,.. then by (2.4) and (2.18), (2.19) redu-

to V(X,Y)=0, and this completes the proof of the theorem.

If trace A5j=—a^oo from (2.8) is subsituted into (1.6) we obtain

(r+l)^ilH|P =
n-r-ı 

S 
j=‘

(a^oo)^ (2.20)

De/inition 2.3.

1^^^ {^1’ • • • ’ ^n—m } be an orthonormal hasis of /■^(M). Then the
scalar normal curvature Kn of M is defined by([3]);

n—m
Y M(A5iA?j—AçjAçi)

İ,İ=1
(2.21)

Theorsm 2.3.

The scalar normal curvature of an (r4-l)-dimensional ruled 
face M is

sur-

KN=2{[(r+l)^l!H||Ml/2)rr
n-r-ı 

S
l,j=ı k=o (2.22)

Kn =

r r

r

where j|H || and r are the mean curvature vector field and scalar cur­
vature of M respectively, and the a-'ok's are the elements of the matrix 
Açj.
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Proof:

We have (2.8)

00

Açı =
a'oi

a^oi 
O

a'or
0

a^or OO

and similarly for Açj. We may now compute AçıAçj—AçjAçı:

AçiAçj—AçjAçı= [btk]= [a‘otajok—ajota’ok] (2.23)

(where t,k = O,İ!-•-îr; İ5j = İ5-'-5n—r—!)• Then by (1.9), we obtain

M(AçiAçj—AçjAçi) S (btk)^ = 
t,k=o

r
2 

t,k=o
(a'ota^ok—a^ota^ok)^.

(2.24)

(i,j = l,...,n—r—1) and so, by (2.21);

Kn =
n-r-ı 

S 
ıj=ı

r
2 (a^ota^ok—aSotaigk)^

t,k=o
(2.25)

and by expanding and using (2.16), (2.20) we complete the proof.

Corollary 2.2.

The scalar normal curvature of a minimal (r-l-l)-dimensional ge­
neralised ruled surface is given by:

rn-r-ı 
S 

i.İ=ı t,k=ı
a^ota^okaiota^ok)

Proof:

For a minimal surface we have H=0 and so the corollary is clear.

Corollary 2.3.

For a totaUy geodesic (r-l-l)-dimensional generalised ruled surface, 
the scalar normal curvature is identically zero.



124 MAHMUT ERGÜT

Proof:

M is totally geodesic implies V is identically zero and so Açj is the 
zero map for each j = l,...,n—r—1.

Theorem 2.4.

Let M be an (r-|-l)-dimensional generalised ruled surface. Let the 
base curve a be an orthogonal trajectory of the generating space be 
paranieterised by arc length. Then the k* principle distribution para- 
meter is

r
5„=(1 - S 71S)’/^/([|De„e„|P

t=l

r
2 <De„ek,ej>^)V  ̂
j=ı

(k=l,.. .,m), and the distribution parameter (drall) is

r m
S=(l- s n (||De„ek(P-

t=ı k=ı

r 
S 
J=ı

Deo®k,ej
(k=l,. .. ,m)

Proof:

Using (1.16) and (1.17) we obtain

r 
SS= {|jâ — 2 <â,ej

3=1
ej — t=ı

â,ar+^>ar4.ı ||} / {||eic

r
S <ek,ej>ej||} (k==l,. . .,m) 
3=1

The base curve a is an orthogonal trajectoıy so 
j=l,...,r. Substituting

â,ej

(2.26)

=0 for

=0 0=1»-ek=Deoek and <â,ar+ı>=7)t (t=l,...,m) 

into (2.26), the desired result is obtained.
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