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SUMMARY

In this paper, we obtain some relationships between curvatures of (r4-1)-dimensional
generalised ruled surfaces. We also caleulate the drall of a generalized ruled surface when
the base curve is taken as an orthogonal trajectory of the generated spaces.

INTRODUCTION

All menifolds, maps, vector fields etc. will be assumed smooth.
Let En be n-dimensional Euclidean space and M a submanifold of En,
Let D denote the standard Riemannian connection of En and let D
denote the Riemannian connection of M. For any vector fields X,Y on
M we have the Gauss equation.

DxY = DxY + V(X,Y) (1.1)

where DY, V(X,Y) are respectively the tangential, normal components
of Dx Y.V is called the second fundamental form of M. We also have
the Weingarten equation giving the tangential and normal components
of ]_)Xi, where £ is a nermal vector field on M,

Let X,Y be vector field on M, £ a normal vector field and <, > the
standard metric on E2. From (1.1) we have

<Dy Y,i> = <V(X,Y), &> (1.3)
and then (1.2) implies
<V(X,Y),E> = <Az(X),Y> (1.4)

Let {£,,...,En_m} be an orthonormal basis of XJ'(M), the space of nor-
mal vector fields on M. Then there exist smooth functions Vj(X,Y)
(j=1,...,n—m) from M into R such that
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n-m
VX)Y) = I VIX)Y)§ \ (1.5)
j=1
and furthermore we may define the mean curvature vector field H by

n-m
H = X (trace Az;/m)§, (1.6)
j=1

and the mean curvature function as | H . At a point peM, H(p) is called
the mean curvature vector and | H(p) | the mean curvature at p[l].

If, for each p € M, H(p) = 0, then M is said to be minimal [1].

Let £ be a unit normal vector, then the Lipschitz-Killing curvature
in the direction £ at the point p € M is defined by [2]:

G(p,&) = detAg(p).- (1.7)

The Gauss curvature is defined by
n-m
Gp) = Z G@E (1.8)
§=

and if G(p) = 0 for all p € M, we say M is developable. In particular, if
the Lipschitz-Killing curvature is zero for each point and each normal
direction, then M is developable.

Following [3], we define M(A) for any symmetric matrix A =
laiy] by

MA) = 3 (ay). (1.9)

Let 1 be an open interval and «: I-E® a curve in Euclidean space.
For each t € I, let {e,(t),...,ex(t)} (1<r<n-2) be an orthonormal set
of vectors spanning the r-dimensional subspace Wi(t) of TypEn. We
have

<ejq,ej> =8ij (i,j=1,. . .1‘) (1.10)
and denoting by é; the derivative of the vector field e; along the corve o
<épei> -+ <epéi> = 0 (i,j = 1,...1) (1.11)

We may define an (r+1)-dimensional submanifold M of En as follows.
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Definition 1.1.
Let «, {e;} be as above and define ¢: IxEr — En by

T

o(tu,...,ur) = alt) + Zl u;ze;(t) (1.12)
j=

for all (t,u,,...,ur)e IXEr. Let M=¢(G) where G=IxEr c Er*'. Note that
r

rank(cpt,cpul, s 7@u1-) = rank(“(t) -+ Z] uiei(t)v el(t)v- . °9er(t)) =71+ 1
im

so M is an (r+1)-dimensional submanifold of En. We call M an (r+1)-
dimensional generalised ruled surface. The curve « is called the base
curve of the generalised ruled surface and the subspace Wy(t) is called
the generating space (or briefly, the generation) at the point a(t) [4].

Definition 1.2.
The subspace A(t) given by
A(t) = Sple,(t),....ex(t), &(t),....ex(t)} (1.13)

~ with dimension dim A(t) = r 4+ m, 0 <m<r, is said to be the asympto-
tic bundle of the generalised ruled surface.

Wo(t) is a subspace of A(t) and, using the Gram-schmidt orthogo-
nalisation process, basis of the form:

“fey(t)s. .. exlt), ary1y..sarim} (1.14)

may be found. Then there exist bjj,ciy such that

r n
¢ = _21 bijej -+ ka Cikay k- (i = 1... 1‘), (115)
j= =
with bjj = — by by (1.11). The basis {e,(t),...,ex(t)} of Wy(t) uni-

quely determines the basis of the asymptotic bundle of a generalised
ruled surface and {e,(r),...,ex(t)} is called the natural carrier basis of

Wi(t) [4]-

Now let nm ;= <ou(t), arym >, K= <<éx(t), ar,x>for k=1,...,m,

r r
so that & = X bjjej—I—Kj ar, (1 <i<m, K> 0), 6 = X hijej
j=1 . j=1 !
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(m<i<r). We now define the following:
8 = nm, [Kx (k=1,...,m) (1.16)

and note that each J; is invariant under a reparameterisation t — t*
with dt /dt* > 0. 3y is called the k'" principle drall (principal distribu-
tion parameter) of M lying in Wi(t) [4]. The drall (distribution parame-
ter) of M is definad by

5= 15,...8, U™ (1.17)

We remark that the k' principle drall and the drall are equsl for a ru-
led surface with m = 1 in E3.

ON THE CURVATURES OF GENERALISED RULED SURFACES

Let M be an (r41)-dimensional generalised ruled surface and s the
arc length pavameter of the curve a. Let {e,(s),...,ex(s)} be an ortho-
normal basis of the generating space Wy(s). Let us choose the base curve
« to be an orthegonal trajectory of the generating spaces Wi(s). M is
given by

o(s,uy,. . .5ur) = afs) -+ Zr] ujei(s), u; € R
i=1 2.1

Let {eo, e,,...,er} be a (local) orthonormal basis of the space of
vector fields (M) and let us choose e, = ¢* (2/8s). By (2.1),

Ps = O’L(S) + .El uiéi(s), (pui = ei(s) (22)

then

Dejey = 0 (if = Ly.ot) @.3)
and using (1.1),

Viepes) = 0 (i,j = 1,...,r) (2.4)
and since Dg;e, L €5 and Dezeo L e, (for each i,j), then

Dejeo = V(eneo) (i=1,...,1) (2.5)

Let {£,...,6n r_,} be an orthonormal basis of normal vector
fields. Then {eo,e;,...,er,&}5...,En_r_,} gives a basis of ToE" for each
point p € M. Let us write
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n-r—

_ . r . 1. .
Degéi=algee, + 121 algey - 21 biggty (G=1,....0—r—1)

(2.6)
— . r . n-r—g A .
De;j&j=algie, -+ 21 aljter + > bhij &g (i=1,.. .T)
r= g=1
Where the alj; are coefficients of the matrix of Ag;:
i a«?oo a?ol ... algp ]
paly,  al ajll.
AE]‘ = —_— (]:1, . .,11—1'-1) ) (27)
alg, aly ... alp |
This matrix simplifies since, using (2.6), <Deey, &;> = — aljy (i,t=

1,...r55=1,...,n—r—1), and then by (2.3), al;;=0, and now we may
write (2.7) as

! aJ:OO algr ... aly l
3301 0 RN 0
Ag, = — e ‘ (2.8)
| SRS
[ alyy 0 .. 0 ’ furthermor

furthermore, (2.6) and (1.4) lead respectively to the relations:
<De;eo, &> =—algi, (i=1,...,r;j=1,...,n—r—1)
and

<Vleieo),Ei> = <Agj(es),eq)> =—alos, (1<i<r; 1<j<n—r—1),
and therefore, by (1.5) and (2.5);

n.r_1
Vieieo) = Dejeg = — '21 algi&; (i=1,....x) (2.9)
j=

Now let X,Y be vector fields on the m-dimensional Riemannian ma-
nifold M whose curvature tensor field is R. As in [6] we have

<XRKY)Y>= <V(XX),V(Y,Y)> —<V(X,V),V(X,Y)>  (2.10)

where V is the 224 fundamental form of M embedded in En.
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Definition 2.2.

Let M be any m-dimensional Riemannian manifold with curvature
tensor R. Let {e,,...,em} be an orthonormal basis of TpM, p € M. Then
the Ricei curvature tensor field S is defined by (see [7]):

m
S(p): ToMxTM->R; (X,Y)+S(p)(X,Y) = £ <R(epX)Y,e;>  (2.11)
i=t

The scalar curvature of M is defined by ([7]);

m
r(p) = I S(p)eser) (2.12)
or, by (2.11),
m m
r(p) = 21 Z <Rej.ei)ei.e> (2.13)
i= j=1

In order to calculate the Ricei curvature of M in the direction of the
vector fields ey(t=1,...,r), we use (2.4), (2.9), (2.10) and (2.11) to
obtain

n.r—

Seper) = 3 (aloy), (t=1,...,x) (2.14)
j=1
and, for the direction eg;
r 1
S(eoseo) = — X p (fﬂljot)2 (2.15)
i= 1
so that, from (2.14) and (2.15),
r
S(eo,eo) = t?l S(et,et)

now we have proved the following:

Theorem 2.1.

Let {e,,....er} be an orthonormal basis of the generating space of
the (r-+1)-dimensional generalised ruled surface M and {€0s€ps. - < o1}
an orthonormal basis of X(M). If the base curve of M is chosen as an
orthonormal trajectory of the generating space, then the Ricci curva-
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ture in the direction of e, is equal to the sum of the Ricei curvatures in
the directions of the vector fields forming a basis of the generating spa-
ce.

By (2.12), the scalar curvature of the (r-}-1)-dimensional generali-
sed riled surface M may be expressed as

r
r=S5(ec,€0) + tZ S(ew.et) = 25(eq.€0)s
=1
so we have the following corollary:

Corollary 2.1.

If an (r+1)-dimensional generalised ruled surface M has an ortho-
gonal trajectory of the generating space chosen as base curve, then the
scalar curvature of M is equal to twice the Ricci curvature in the di-
rection of the vector field e,.

(2.15) may now be written in the following way:
n—_T-—g

T
r=—2 X T (alo)® (2.16)
t=1

j=1

and using (1.3), (1.4), (1.5), (2.6) and (2.8) we have:
V(eoeo) = nfﬁ:l (trace Az)%; (2.17)
=
and now (1.6) gives;
H = (1/x41) V(eo.e0).
If M is minimal then H is zero and so
Viegreo) = 0. (2.18)

We say that Xp, Y, € Ty M are conjugate if V (Xj, Yp) = 0, [5]. We
have the following theorem:

Theorem 2.2.

Let {e,,...,er} be an orthonormal basis for the generating space
of an (r-41)-dimensional generalised ruled surface M, and let e, be a unit
tangent vector field to the base curve, the letter taken to be an ortho-
gonal trajector of the generating space of M. Then the ruled surface M
is totally geodesic iff e, is conjugate to each vector e;, i=1,...,r.
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Proof :

{€0,€s5. - .,er} is an orthonormal basis of %(M) and for each X,Y
€ X(M) we may write

T r
X:aoeo + b ajej , Y:boeo + > biei
j=1 i=1

and then

1

T r
V(X,Y)=achoV(eoeo) + = (aibotaobi)V(eeo) -+ X aibiV(eiei)
=t =1 (2.19)
=S
If M is totally geodesic, then V is identically zero ([7]), so e, is cer-
tinly conjugate to e;, i=1,...,r.
1=
If v(eq,e;)=0 for i=1,...,r, then by (2.4) and (2.18), (2.19) redu-
ces to V(X,Y)=0, and this completes the proof of the theorem.

If trace Ag;=-—aly, from (2.8) is subsituted into (1.6) we obtain

IR [H[P = fz:‘ (aloo)’ (2.20)
J:
Definition 2.3.

Let {&,...,6n_m} be an orthonormal basis of X'L(M) Then the
scalar normal curvature Ky of M is defined by([3]);

n—m
Ky = X M(AziAg—AgAz) (2.21)
i,j=1
Theorem 2.3.

The scalar normal curvature of an (r-}-1)-dimensional ruled sur-
face M is

n_r— r
Ky=2 { [(1‘~|—1)2 “H ”2‘_(1 /2)1‘]2 — X 1 Z aiotajokajotaiok}e
L=t ko (2.22)

where |H| and r are the mean curvature vector field and scalar cur-
vature of M respectively, and the alg’s are the elements of the matrix

Agj.
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Proof:

We have (2.8)

algo aloy alor
3101

Aii = _— .
aior 0 - 0

and similarly for Az;. We may now compute AzjAz;—Az;Azi:
A&iAEj—AEjA£i= [btk]z [aiotajok—ajotaiok] (2 .23)

(where t,k=0,1,...,r; i,j=1,...,0—1r—1). Then by (1.9), we obtain

k=0

T
M(AziAzj—AzjAz) = t kz= . (bup)? = = (alptalor—alotalor)’

(2.24)
(i,j==1,...,n0—r—1) and se, by (2.21);
n-r—g

r
KN = pX = (aiotajok———aiotaiok)z (2 . 25)

i,j=1 t,k=0
and by expanding and using (2.16), (2.20) we complete the proof.

Corollary 2.2.

The scalar normal curvature of a minimal (r41)-dimensional ge-
neralised ruled surface is given by:

n_rg T
KNI 2((1‘2 /4:) — > p) aiotajokajotaiok)
i,j=1 t,k=1

Proof':

For a minimal surface we have H=0 and so the corollary is clear.

Corollary 2.3.

For a totally geodesic (r-}-1)-dimensional generalised ruled surface,
the scalar normal curvature is identically zero.
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Proof :

M is totally geodesic implies V is identically zero and so Ag;j is the
zero map for each j=1,...n—xr—1.

Theorem 2.4.

Let M be an (r+1)-dimensional generalised ruled surface. Let the
base curve « be an orthogonal trajectory of the generating space be

parameterised by arc length. Then the k' principle distribution para-
meter is

T _ r _ N
B=(l — I 1) [([Degerlf — X <Degories>?'P
= j=1

(k=1,...,m), and the distribution parameter (drall) is

r m iy
d3=(1— Z %)) I (|Dejex|? — I <Deger,e;>7)m
t=1 k=1 j=t (k=1,...,m)
Proof :
Using (1.16) and (1.17) we obtain
r r
d={& — ,21 <a,ej>ej — tzl <aary,>ary [}/ {éx —
j= =
iy
T <egei>elf} (k=1,...,m) (2.26)
§=

The base curve o is an orthogonal trajectory so <a.,e;>=0 for
j=1,...,x. Substituting

<&ei>=0 (j=L1,...;r) éx=Degsex and <dar, ,>=mn; (t=1,...,m)
into (2.26), the desired result is obtained.
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