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ABSTRACT

This paper is dealing with the existence of F-perfect Morse functions on a smooth, compact,
connected manifold, without boundary. Seme concrete results concering the surfaces Tg and Pg,
of genus g = 0, are given.

PRELIMINARIES

Let Mm he a smooth compact, connected manifold of dimension
m > 1, without boundary (i.e. éM = &), and let Fm(M) be the set
of all Morse functions defined on M. For f € (M) let us denote by
wi(f) the number of the critical points of f with the Morse index k,
0 < k << m. Let y(f) be the total number of critical points of f, i.e,

o6 = £ (o) W

The number defined by ’
7(M) = min {u(f): £ e Fn(M)} (2)

is called the Morse-Smale characteristic of M. For more details con-
cerning the above notins we refer to the author’s hook

[1, Chapter 4].

Because M™ is a compact manifold it follows that M has the ho-
motopy type of a finite CW- complex. Therefore the singular homo-

topy groups Hy(M; Z), k = 0, m, are finitely generated (see Fomenko,
A.T. [4, p 94]), that is for k € Z
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Hu(M; 2) = (2@ ... ©F) ® Loy, @ - Oluggy) O

By times
where B = By(M; Z) are the Betti numbers of M with respect to the
group (Z, +), ie. By(M; Z) = rank Hy(M; Z), k € Z.

Consider Hy(M;Z), k = 0, m, the singular homology groups
with the coefficients in the field F and B (M; F) = rank Hy(M; F) =
dimp Hy(M; F), k = 0, m, the Betti numbers of M with respect to F.

Put

m m
BOGZ) = 3 B 2), BOLF) = 2 &(M: ) )
For f € §m(M) the following important relations hold:

ux(f) > Bx(M; F), k = o, m (weak Morse inequalities)
m

T (-Dx pxl(f) = % (M) (Euler formula)

k=0

(see Andrica, D. [1, Chapter 3] for the proof and interesting applicati-
ons). Recall that, in the last relation, (M) represents the Euler—Poin-
care characteristic of M, i.e.

L) = T (-1)k dimg H¥M), (5)
k=0

where HE(M), k = 0, m, are the de Rham real cohomology spaces of M.
The Morse function f € Fyu(M) is F-perfect if the weak Morse

inequalities become equalities, i.e.
px(f) = Bx(M; F), k = 0, m. (6)

In the sequel we are interested in the following problem, which
naturally appears in the theory of the tight and taut immersions (see,
for instance, the excellent book of Cecil, T.E., Ryan, P.J. [3]):

Problem. For a given field F, characterize the manifolds which
admit F-perfect Morse functions.

Concerning this question it is known the following result (see
Andrica, D., [1, Chapter 4], {2, Theorem 2]);

Theorem 1. The manifold M has F-perfect Morse functions if
and anly if
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T (M) =B (M; F). 0

Let p > 2 be a prime number. Taking into account the relations
(3) we can define

d(M, p) = card {ny, j = 1, b(k), k = 0, m; p| nk;}

The following result represents a necesary and sufficient condi-
tion, in terms of v (M), 8 (M; Z) and d (M, p), in order that the manifold
M has Zp-perfect Morse functions (see Andrica, D. [2, Theorem 4],
[1, Chapter 4]).

Theorem 2. The manifold M has Zp — perfect Morse functions
an only if the following equality holds

v (M) = 8 (M; Z) + 2d (M, p). - (8)

The main results. The aim of this note consists in an answer to
the above problem when the manifold M™ is a smooth compact, con-
nected, surface, i.e. the dimension of M is m = 2.

Let T2 be the 2—dimensional torus, and let us define the smooth,
compact, connected, orientable surface of the genus g > 0, by

Tg = T2 £ T2 £ ... £T2, 9)

g times

i.e. Tg is the connected sum of g copies of T2. If g = 0, one considers
Ty = S2, the 2-dimensional sphere.

Consider P the smooth, compact, connected, and non- orientable
surface, of genus g > 0, defined by

Pg=P IR2 £ P IR2 ...~ P IR, (10)

SO,

(g -+ 1) times
where P IR2 is the real projective plane.

It is well-known (see Gramain, A. [7]) that, if M is a smooth,
compact, connected surface, without boundary, then M is diffeomorphic
to Ty if it is orientable, and M is diffeomorphic to Py if it is non— orien-
table, for some values of g.

The following result is a direct consequence of the well-known
exact Mayer—Vietoris sequence in the de Rahm cohomology (see

Godbillon, C., [6, Proposition 1.3., p 179]):
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x (Te) = 2-2g, 5 (Py) = 1-g. (11)

Kuiper, N.H. [8] (see also [9, § 4] or the book of Cecil, T.E.,
Ryan, P.J. [3, Proposition 5.6., p 26]) proved the following very
interesting . connection between the Morse—Smale characteristic given
by (2) and the Euler-Poincare characteristic defined by (5), of a smooth,
compact, connected surface M, without boundary:

v (M) = 4 -y (M) (12)
Using this result and the relations (11) one obtains
v(Te) =2+ 2g (P =3+4g (13)

Theorem 3.
(i) Ty has Q-perfect Morse functions.

(ii) For any prime number p > 2, T, has Zp— perfect Morse func-
tions.

Proof: It is well-known (see Lehman, D., Sacré, C. [10, Chapter
IV, p 252-302]) that the integer homology of Ty is given by

Zifk=20

Z@...0Zifk=1

A 2g times
Hy (Tg; Z) ~

Zif k = 2

{0} otherwise,

One obtains B¢ (Ty; Z) = B, (Tg; Z) = 1, B, (Tg; Z) = 2g, and
d (Tg, p) = 0 for any prime number p = 2.

(i) It is known (sce Andrica, D. [2. Lemma 3], [1, Chapter 4})
that Bx (M; Z) = 8x (M; Q), k = o0, m; thus B (Tg; Q) =2 + 2g.
Taking into acoount the first relation in (13) it follows
¥ (Tg) = B (Tg; Q), and the desired conclusion follows from Theorem 1.

(i) Because d (Tg, p) = 0, for any prime number p => 2, one
obtains y (Ty) = B (Tg; Z) + 2d (T, p), and the conclusion follows
via Theorem 2.

Theorem 4.

i) Pg has not Q-—perfect Morse functions.
g P
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(ii) For any prime number p = 3, Py has not Zp — perfect Morse
functions.
(iii) Py has Z, - perfect Morse funciions.

Proof: The singular homology of Py (see the book of Lehman,
D., Sacre, C. [10, Chapter IV, p 252-302]) is

[Zifk:{)

1Z2@(Z@...®Z) if k=1
Hy (P 2) ~ I —

I g tunes

| {0} otherwise.
Thercfore By (Pg; Z) = 1, 81 (Pg; Z) = g, B2 (Pgs Z) =0, and

1 if p=2
d (Pg, p) =
0 it  p=>=3.
One obtains B (Pg; Z) = 1 4 g = B (Pg; Q). Using the second relation
in (12), it follows v (Pg) = 3 -+ g#B (P Q). iz Py has not

Q - perfect  Morse functions. Moreover,

y(Pe) =3+ g=1+4+g+2=08(Pg Z) + 2d (Pg; 2), ie. Py
admits Z, — perfect Morse functions. In an analogous way one can
obtain the conclusion (ii).

Remark. For g = 0 the above results appear in the author’s
paper [2, Theorems 7, 8] for the m—dimensional manifolds S™ and
P |Rm.
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