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ABSTRACT

The evolute of a given curve is a well-known concept in 3-dimensional Euclidean space
IR% In this paper, we generalize this concept to n-dimensional Euclidean space !R". In
addition, defining an involute-evolute curve couple (v, B) in IR", we obtain some properties
connected with (¢, 8) and its horizontal lift («H, RH) in TIR™.

INTRODUCTION

Let {Vy, Vy,..., Vu! be the Frenet frame field of a curve
x: I IR, I < IR, where V| = x(s) for eachs. Then, for h <C n, the
vector fields V,, V,,..., V}, span an h-dimensional space called the
h—dimensoinal osculating space of x (Gerretsen, 1962).

Let x: I -> IR" be a given curve in |R® with the Frenet frame field
{Vi- Vo,..., Vi and consider the curve

k
y()=x(s) + Z & Vi, & = & (s), k < n-1. (1)
i=1

Those curves (1) which are orthogonal trajectories of the system
of the k-dimensional osculating spaces of x are called involutes of

order k of the given curve x (Gerretsen, 1962).

Now let
J "o dx
g= X gjdx o dx: (gj)
ij=1

be a Riemannian metric on IR1 and let 57 be the Riemannian connection
of IR1, Then the vertical lift gV and the horizontal life g of g have
respectively the components
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in the induced coordinate system (x", y") in the tangent manifold TIR®,
n

where I'ij" = X y*I™; and (x") is a system of local coordinates
r=1" -

defined in neighborhood U in IR® (Yano and Ishiara, 1973).

Let usset gVH = oV o, Thus the metric gVH has the components
g g g g p

gVH,

n h V‘h 7
gii 112—1 (Ty g™ + i g™ gii I
| (2)

I gji 0

and it is a pseudo—Riemannian metric on TIR2.

n
Let there be given a vector field X = X Xb -
h=

oX
Then we define the horizontal lift XH of X by

— Kh -
XH;

with respect to the induced coordinates in TIR™ (Yano and Ishiara,
1973). The horizontal lift XH of X to TIR® is a projectable vector
field with projection X. Furthermore the horizontal lift XH of X is a
horizontal vector field.

We denote by 7 the horizontal lift of ¥ to TIRD and by
n: TIR? - IR" the project.on mappimng.
INVOLUTE-EVOLUTE CURVE COUPLES

Definition 1: Let o, 8: I - TIR», I < IR, be two curves in

TIR™. Then the curve couple {«,8) in IR? such that
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(@, B) = mo (:c, E) = (m);, ROE) | (4)

is éélled the projcctidn of the couple (;, @) In this case, we say that

~ A~

(«, B) is projectable with projection («, 8).

Definition 2: A curve couple (;, Zi) in TIR" is horizontal if the
tangent vectors of P andf& are horizontal at each point. Given a curve
couple («, ) in IR, a horizontal lift (;, E) of (a, B) is a horizontal curve
couple in TIR® such that (;, Ei) is projectable with projection (o, 8).

We denote by («xH, BH) the horizontal lift of (x, B).

‘Definition 3: The curves
n

BE) =als) + X GVi G = G(s) k < n-1 (5)
i=k+]

such that the curve o is one of its involutes of order k, are called evolutes
of order n-k—1 of the given curve « in |RD,

Definition 4: Given a curve « in IRD™, if there exists an evolute
B of order n-k-1, then the couple (a,B) is called an involute—evolute
curve couple of order (k, n—k-1).

Now we give an application our definitions for the special case
n = 3. Let «: I - IR3 be a given curve in IR3. If there exists a curve
B: I - IR3 given by

Bls) = afs) + LV, + L3V,

such that the curve o is one of its involutes of order 1, then § is an
evolute of order 1 of «. Thus, according to our definitions, (o, B) is
an involute—evolute curve couple of order (I, 1) in IR3. Furthermore
this couple is unique involute-evolute curve couple in IR3.

Lemma 1: Tet X and Y be two vector field on IRN. Then,
gV (XH, YH) = g (X, Y). (6)
Proof: From (2) we write

n n
gVH(XYM) = 2 (g X (Mgt + T g)) (XYY +
I, 1= =1

n : — n - .
Z gy (XH)(YH)! + g (XH) (YH)L
i, i=1 ,i=1
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Thus we obtain

n n
gVH (XH, YH) = X guXJ YT+ S T XIY! 4 lifgin XiY1
1,i=1 iy,

§,i,h=1 i,1,B=1

n n
- Y ThgXiYr- I T gm Xt Y

§,ih=1 isi,h=1
n
gVH (XH, YH) = jii‘;l giXi Yi = g (X, Y).

Theorem 1: Let (x, ) be an involute—evolute curve couple of
order (k, n-k-1) in Riemannian manifold (iR?, g). Then the horizontal
lift curve couple (xH, BH) is also an involute—evolute curve couple of
same order in pseudo-Riemannian manifold (TIR?, gVH).

Proof: Let {Vy,..., V4} and {Wy,..., Wn} be Frenet n—-frames
of « and B, respectively. Since (a, B) is an involute—evolute curve couple
of order (k,n-k-1) in (IR, g), « is an involute of order k of the curve

B(s) = afs) + = & Vi, G = Gils), k < n-1,
i=k+1
Therefore the curve
k
afs) = B(s) + El EiWi, &3 = Ei(s), k < n-1 (7)

is orthogonal trajectory of the system of the k-dimensional osculating
spaces of B, that is, the tangent V{ = d&(s) is orthogonal to the osculating
spaces Sp {Wy,..., Wy} for every s. Thus we have

g(Vi, Wy) =0 for 1 <r <k (8)

Now we consider the horizontal lift of a(s). From (7) we get

&H(s) = BH(s) +§ £V WiH, 9
i=1 , : ‘

Since oH(s) = V,H and gVH (V,H, W;H) = g (V;, Wy) from (6), we

obtain
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gVH(ViH, W H) =0 for 1 < r < L. (10)

Thus we see that «H is an orthogonal trajectory of the system of the
k-dimensional osculating spaces of B, that is, o is in an involute of
order k of BH. Therefore («*, 3H) is an involute-evolute curve couple
of order (k, n-k-1) in (TIRR, gVH),

Theorem 2: Let (x,8) be an inv olute-evolute curve couple of
order (k, n~k-1) in Riemannian mamfold (iRn, g) with the Riemannian
connection /. Then.

no . k1 . . .
S (G Gor kg - Gy ki) Vi = Z (Ei + G ki - i k) Wy, (1)

i=k

where k; and k; are the curvature functions of « and B respectively,
such that k, = ky = k, n = 0 and the functions ¢; and %; are
defined by (5) and (7) respectively, such that G =0 for i <k + 1
and & = 0 fori > k.

Proof: Since («, 8) be an involute-evolute curve couple of  order
(k, n-k-1) in (IR?, g), the curve B can be written in the form

BE) = afs) +~ T 4V

i=k+1

Thus we get

?’(S) - O‘(S) + 2 ClV + Z Cl i

1=k

BE) =als) + X LVi+ B G (kg Vi 4 kiVi,y),

i=k+1 i=k+1

where kg = kn = 0. In addition, with & = O for i<k -+ 1, we obtain

B(S) = OZ(S) + % (Ci + T kg - G ki) Vi (12)

i=k

Now with the use of the hypothesis for the curve o we can write
a(s) = B(s) + Z & Wi
i=1
Thus we get

} ; kK . K )
afs) = B(s) + 51 & Wy + §1 & Wi
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. k . i
afs) = B(S) + —21 B W + Zi (~kiig Wiig 4+ kWi ),
where ky = k; = O. Furthermore, with £ = 0 for i > k, we obtain
. . k1 . . .
as) =B(s) + X (Ei+ G ki -Gk W (13)
i=1

Substituting (12) in (13) we get

n . k1 . i .
217{ G+ G ki -G k) Vi = 2 (& + &g ki - k)W
L= : i=1

which completes the proof.
Consider the horizontal lift curve couple (¢, BH) of an involute-

evolute curve couple (a, 8) of order (k, n-k-1) in (TIR®, gVH) with the

horizontal lift connection \/H. Denote by k; and k;, V; and W; the
curvature functions of «® and BH, the Frenet vector fields of «¥ and
BH. Then

k= kY = ko, & = kY = kor, V; = Vi, W, = WiH
(Turgut, 1989).

Thus as in the previous theorem we get

n k41
izk GV + 4GV ki V-G V) Vil = X (&Y + &Y
=K izl
ki V- £V EkY) Wi, (14)
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