DISCRETE HYPERGEOMETRIC FUNCTIONS AND THEIR PROPERTIES

By

MUMTAZ AHMAD KHAN

(Received July 13, 1994; Accepted June 17, 1994)

Dept. of Appl. Maths., Z. H. College of Engg. A.M.U., Aligarh, INDIA

ABSTRACT

In 1979, Harman [8] in connection of the study of q-analytic functions [7]., introduced a discrete analogue $z^{(n)}$ of the classical power function z^{n}. This paper deals with a study of a class of functions called discrete hypergeometric functions defined in (2.2) by using the discrete power function $z^{(n)}$.

1. INITRODUCTION

Harman [7], in 1978, introduced the concept of q-analyticity of a function by replacing derivatives by q-difference operators $D_{q, x}$ and $D_{q, y}$ which are defined as follows:

$$
\begin{align*}
& D_{q, x}[f(z)]=\frac{f(z)-f(q x, y)}{(1-q) x} \tag{1.1}\\
& D_{q, y}[f(z)]=\frac{f(z)-f(x, q y)}{(1-q) i y} \tag{1.2}
\end{align*}
$$

where f is a discrete function.
The two operators involve a 'basic triad' of points denoted by

$$
\begin{equation*}
\mathbf{T}(\mathrm{z})=\{(\mathbf{x}, \mathbf{y}),(\mathbf{q} \mathbf{x}, \mathbf{y}),(\mathbf{x}, \mathrm{q} \mathbf{y})\} \tag{1.3}
\end{equation*}
$$

Let D be a discrete domain. Then a discrete function f is said to be ' q-analytic' at $z \in D$ if

$$
\begin{equation*}
\mathbf{D}_{\mathrm{q}, \mathrm{x}}[\mathrm{f}(\mathrm{z})]=\mathrm{D}_{\mathrm{q}}, \mathrm{y}[\mathrm{f}(\mathrm{z})] \tag{1.4}
\end{equation*}
$$

If in addition (1.4) holds for every $z \in D$ such that $T(z) \subseteq D$ then f is said to be ' q-analytic' in D.

For simplicity if (1.4) or (1.5) holds, the common operator D_{q} is used where

$$
\begin{equation*}
\mathbf{D}_{\mathbf{q}} \equiv \mathrm{D}_{\mathbf{q}, \mathrm{x}} \equiv \mathrm{D}_{\mathrm{q}, \mathrm{y}} \tag{1.6}
\end{equation*}
$$

The function z^{n} is of basic importance in complex analysis since its use in infinite series leads to the Weierstrassian concept of an analytic function. Harman [8] defined, for a nonnegative integer n, a qanalytic function $z^{(n)}$ to denote the discrete analogue of $\mathbf{z}^{(n)}$, if it satisfies the following conditions:

$$
\left.\begin{array}{rl}
\mathbf{D}_{\mathrm{q}}\left[\mathbf{z}^{(\mathrm{n})}\right] & =\frac{\left(1-\mathrm{q}^{\mathrm{n}}\right)}{(1-\mathrm{q})} \mathbf{z}^{(\mathrm{n}-1)} \tag{1.7}\\
\mathbf{z}^{(0)} & =1 \\
0^{(n)} & =0, \mathrm{n}>0
\end{array}\right\}
$$

The operator C_{y}, given by

$$
\begin{equation*}
\mathrm{C}_{\mathrm{y}} \equiv \sum_{\mathrm{j}=0}^{\infty} \frac{(1-\mathrm{q})^{\mathrm{j}}}{(\mathrm{l}-\mathrm{q})_{\mathrm{j}}}(\mathrm{iy})^{\mathrm{j}} \mathrm{D}_{\mathrm{q}, \mathrm{x}}^{\mathrm{j}} \tag{1.8}
\end{equation*}
$$

when applied to the real function x^{n}, yields $z^{(n)}$.

$$
\text { In fact, Harman [8] defined } z^{(n)} \text { by }
$$

$$
\mathrm{z}^{(\mathrm{n})} \equiv \mathrm{C}_{\mathrm{y}}\left(\mathrm{x}^{\mathrm{n}}\right) ; \mathrm{n} \text { a non-negative integer }
$$

$$
\begin{equation*}
=\sum_{j=0}^{\infty} \frac{(1-q)^{j}}{(1-q)_{j}}(i y)^{j} \operatorname{Di}^{j}, x\left(x^{n}\right), \tag{1.9}
\end{equation*}
$$

which on simplification, yields

$$
\mathbf{z}^{(n)}=\sum_{j=0}^{\mathrm{n}} \quad\left(\begin{array}{l}
\mathrm{n} \tag{1.10}\\
\mathrm{j}
\end{array} \mathrm{q}_{\mathrm{a}} \quad \mathbf{x}^{\mathrm{n}^{-j}}(\mathrm{iy})^{\mathrm{j}}\right.
$$

or alternatively,

$$
\begin{equation*}
z^{(n)}=\sum_{j=0}^{n}\left(\frac{n}{j}\right)_{q} x^{j}(\mathbf{i y})^{n^{-j}} \tag{1.11}
\end{equation*}
$$

To justify that $z^{(n)}$ is a proper analogue of z^{n}, Harman [8] proved that $z^{(n)}$ is a q-analytic function and satisfies the three requirements of (1.7).

We shall also use the following notations due to Hahn [3]: Let

$$
\begin{equation*}
f(x)=\sum_{r=0}^{\infty} a_{r} x^{r} \tag{1.12}
\end{equation*}
$$

be a power series in x. Then

$$
\begin{align*}
& f([x-y])=\sum_{r=0}^{\infty} a_{r}(x-y)_{r} \tag{1.13}\\
& \mathbf{f}\left(\frac{t}{[x-y]}\right)=\sum_{r=0}^{\infty} a_{r} \frac{t^{r}}{(x-y)_{r}} \tag{1.14}
\end{align*}
$$

where $(x-y)_{\alpha}=x^{\alpha} \prod_{n=0}^{\infty}\left[\frac{1-(y / x) q^{n}}{1-(y / x) q^{\alpha+n}}\right]$.
For various other definitions, notations and results used in this paper one is referred to remarkable books on q-Hypergeometric series by Exton [1], Gasper and Rahman [2] and Slater [13].

2. DISCRETE HYPERGEOMETRIC FUNCTIONS

Using Harman's discrete analogue $z^{(n)}$ for the classical function z^{n}, we now introduce a discrete analogue ${ }_{r} M_{s}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; q, z\right]$ of the q-hypergeometric function ${ }_{r} \Phi_{s}{ }^{(q)}\left[\left(\mathrm{a}_{\mathrm{r}}\right) ;\left(\mathrm{b}_{\mathrm{s}}\right) ; \mathrm{z}\right]$.

It is well known that

$$
\mathrm{D}_{\mathrm{q}}\left\{{ }_{\mathrm{r}} \Phi_{\mathrm{s}}{ }^{(\mathrm{q})}\left[\left(\mathrm{a}_{\mathrm{r}}\right) ;\left(\mathrm{b}_{\mathrm{s}}\right) ; \mathrm{x}\right]\right\}=\frac{\left(1-\mathbf{q}^{\mathbf{a}_{1}}\right) \ldots \ldots\left(1-\mathrm{q}^{\mathrm{a}_{\mathrm{r}}}\right)}{(1-\mathrm{q})\left(1-\mathrm{q}^{b_{1}}\right) \ldots\left(1-\mathrm{q}^{\mathrm{b}_{\mathrm{s}}}\right)}
$$

(q)

$$
{ }_{\mathrm{r}} \Phi_{\mathrm{s}}^{(\mathrm{T}} \quad\left[1+\left(\mathrm{a}_{\mathrm{r}}\right) ; 1+\left(\mathrm{b}_{\mathrm{s}}\right) ; \mathrm{x}\right]
$$

and so it seems reasonable to assume that for n , a non-negative integer a q-analytic function ${ }_{r} M_{\mathrm{S}}\left[\left(\mathrm{ar}_{\mathrm{r}}\right) ;\left(\mathrm{b}_{\mathrm{s}}\right) ; \mathrm{q}, \mathrm{z}\right]$ will denote the discrete analogue of ${ }_{r} \Phi_{s}{ }^{(q)}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; z\right]$ if it satisfies the following conditions:
(i) $D_{q}\left\{r M_{s}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; q, z\right]\right\}=\frac{\left(1-q^{a_{1}}\right) \ldots \ldots \ldots\left(1-q^{a_{r}}\right)}{(1-q)\left(1-q^{b_{1}}\right) \ldots \ldots\left(1-q^{b_{s}}\right)}$

$$
\begin{equation*}
{ }_{\mathbf{r}} \mathbf{M}_{\mathrm{s}}\left[\mathbf{l}+\left(\mathrm{a}_{\mathrm{r}}\right) ; \mathbf{1}+\left(\mathrm{b}_{\mathrm{s}}\right) ; \mathbf{q}, \mathbf{z}\right] \tag{2.1}
\end{equation*}
$$

(ii) The first term of the series is 1 .
(iii) $\quad{ }_{\mathbf{r}} \mathbf{M}_{\mathbf{S}}\left[\left(\mathrm{a}_{\mathrm{r}}\right) ;\left(\mathrm{b}_{\mathrm{s}}\right) ; \mathbf{q}, 0\right] \neq 1$.

Such a function is obtained by applying the operator C_{y} defined in (1.8) to the q-hypergeometric function ${ }_{r} \Phi_{s}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; x\right]$, with real argument x.

In fact, ${ }_{r} M_{s}\left[\left(a_{1}\right) ;\left(b_{s}\right) ; q, z\right]$ is defined by

$$
\left.\begin{array}{rl}
{ }_{\mathbf{r}} \mathbf{M}_{s}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; q, z\right] \equiv C_{y} & \left\{\begin{array}{r}
(q) \\
r
\end{array} \Phi_{s}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; x\right]\right.
\end{array}\right\}
$$

$$
\begin{equation*}
=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{\left(q^{\left(a_{r}\right)}\right)_{n+k} x^{n}(i y)^{k}}{(q)_{n}(q)_{k}\left(q^{\left(b_{s}\right)}\right)_{n+k}} \tag{2.3}
\end{equation*}
$$

The following theorem shows that ${ }_{r} M_{s}\left[\left(a_{r}\right) ;\left(b_{S}\right) ; q, z\right]$ satisfies (2.1) and hence can be taken as a discrete analogue of $\mathrm{r}_{\mathrm{s}}(\mathrm{q})$ [($\left.\mathrm{a}_{\mathrm{r}}\right)$; $\left.\left(b_{s}\right) ; \mathrm{z}\right]$.

Theorem 1. $r M_{S}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; q, z\right]$ is q-analytic and satisfies the requirements of (2.1).

Proof:

$$
{ }_{r} M_{s}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; q, z\right]=\sum_{n=0}^{\infty} \frac{\left(q^{\left(a_{r}\right)}\right)_{n} z^{(n)}}{(q)_{n}\left(q^{\left(b_{s}\right)}\right)_{n}}
$$

$$
=\sum_{n=0}^{\infty} \frac{\left(q^{\left(a_{r}\right)}\right)_{n}}{(q)_{n}\left(q^{\left(b_{s}\right)}\right)_{n}} \sum_{j=0}^{n}\binom{n}{j}_{q} x^{n-j}(i y),
$$

and hence
$\mathrm{D}_{\mathrm{q}}, \mathrm{x}\left\{\mathrm{r}_{\mathrm{s}}\left[\left(\mathrm{a}_{\mathrm{r}}\right) ;\left(\mathrm{b}_{\mathrm{s}}\right) ; \mathrm{q}, \mathrm{z}\right]\right\}$
$=\sum_{n=0}^{\infty} \frac{\left(q^{\left(a_{r}\right)}\right)_{n}}{(q)_{n}\left(q^{\left(b_{s}\right)}\right)_{n}} \sum_{j=0}^{n-1}\binom{n}{j}_{q} \frac{\left(1-q^{n-j}\right)}{(1-q)} x^{n-j-1}(i y)^{j}$
$=\frac{1}{(1-q)} \sum_{n=1}^{\infty} \frac{\left(q^{\left(a_{r}\right)}\right)_{n} z^{(n-1)}}{(q)_{n-1}\left(q^{\left(b_{s}\right)}\right)_{n}}$
$=\frac{\left(1-q^{a_{1}}\right) \ldots \ldots\left(1-q^{a_{r}}\right)}{(1-q)\left(1-q^{b_{1}}\right) \ldots\left(1-q^{b_{s}}\right)}{ }_{r} M_{S}\left[1+\left(a_{r}\right) ; 1+\left(b_{s}\right) ; q, z\right]$.
similarly,

$$
\begin{aligned}
& D_{q}, y\left\{{ }_{r} M_{s}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; q, z\right]\right\} \\
= & \frac{\left(1-q^{a_{1}}\right) \ldots \ldots\left(1-q^{a_{r}}\right)}{(1-q)\left(1-q^{b_{1}}\right) \ldots\left(1-q^{b_{s}}\right)} r^{M_{S}}\left[1+\left(a_{r}\right) ; 1+\left(b_{s}\right) ; q, z\right] .
\end{aligned}
$$

Hence ${ }_{r} M_{s}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; q, z\right]$ is q-analytic and satisfies condition (i) of (2.1).

Since $z^{(0)}=1$ and $0^{(n)}=0, \quad n>0$, by definition and so ${ }_{r} M_{s}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; q, z\right]$ satisfies (ii) and (iii) also of (2.1). This proves the theorem.

It is of interest to note the similarity of ${ }_{r} M_{s}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; q, z\right]$ to the function $\mathrm{r}_{\mathrm{s}}{ }^{(\mathrm{q})}\left[\left(\mathrm{a}_{\mathrm{r}}\right) ;\left(\mathrm{b}_{\mathrm{s}}\right) ;[\mathrm{x}+\mathrm{y}]\right]$ defined by Jackson [10] as follows:

$$
\begin{align*}
& { }_{r} \Phi_{s}{ }^{(q)}\left(\left[a_{r}\right) ;\left(b_{s}\right) ;[x+y]\right] \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\left(q^{\left(a_{r}\right)^{\prime}}\right)_{m+n} x^{m}(i y) n^{n} \frac{1}{n} n(n-1)}{(q)_{m}(q)_{n}\left(q^{\left(b_{s}\right)}\right)_{m+n}} \\
& =\sum_{N=0}^{\infty} \frac{\left(q^{\left(a_{r}\right)}\right)_{N}}{(q)_{N}\left(q^{\left(b_{s}\right)_{N}}\right)_{N}}(x+i y)(x+i q y) \ldots\left(x+i q^{N-1} y\right) . \tag{2.4}
\end{align*}
$$

The discrete hypergeometric function defined in (2.2) can be written in either of the following two forms:
${ }_{r} M_{S}\left[\left(a_{r}\right) ;\left(b_{s}\right) ; q, z\right]=\sum_{n=0}^{\infty} \frac{\left(q^{\left(a_{r}\right)}\right)_{n}(i y)^{n}}{(q)_{n}\left(q^{\left(b_{s}\right)}\right)_{n}}{ }_{r} \Phi_{S}^{(q)}\left[\left(a_{r}\right)+n ;\left(b_{s}\right)+\mathbf{n} ; \mathbf{x}\right]$
or alternatively as,

$$
\begin{equation*}
{ }_{r} \mathbf{M}_{\mathrm{S}}\left[\left(\mathrm{a}_{\mathrm{r}}\right) ;\left(\mathrm{b}_{\mathrm{s}}\right) ; q, \mathrm{z}\right]=\sum_{\mathrm{n}=0}^{\infty} \frac{\left(q^{\left(\mathrm{a}_{\mathrm{r}}\right)}\right)_{\mathrm{n}} \mathrm{x}^{\mathbf{n}}}{\left(\mathrm{q}_{\mathrm{n}}\left(\mathrm{q}^{\left(b_{\mathrm{s}}\right)}\right)_{\mathrm{n}}\right.}{ }_{\mathrm{r}} \Phi_{\mathrm{S}}^{(\mathrm{q})}\left[\left(\mathrm{a}_{\mathrm{r}}\right)+\mathbf{n} ;\left(\mathrm{b}_{\mathrm{s}}\right)+\mathbf{n} ; \mathbf{i y}\right] . \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6), we observe that a discrete hypergeometric function can be regarded as a 'generating function' for the q-hypergeomotric functions of the form
(q)
${ }_{r} \Phi_{\mathrm{S}} \quad\left[\left(\mathrm{a}_{\mathrm{r}}\right)+\mathrm{n} ;\left(\mathrm{b}_{\mathrm{s}}\right)+\mathrm{n} ; \mathrm{x}\right]$ or ${ }_{\mathrm{r}} \Phi_{\mathrm{s}} \quad\left[\left(\mathrm{a}_{\mathrm{r}}\right)+\mathrm{n} ;\left(\mathrm{b}_{\mathrm{s}}\right)+\mathrm{n} ; \mathrm{iy}\right]$.
We further observe that for $\mathrm{x}=0, \mathrm{r}_{\mathrm{s}}\left[\left(\mathrm{a}_{\mathrm{r}}\right) ;\left(\mathrm{b}_{\mathrm{s}}\right) ; \mathrm{q}, \mathrm{z}\right]$ reduced
(q)
(q)
to ${ }_{r} \Phi_{\mathrm{S}}\left[\left(\mathrm{a}_{\mathrm{r}}\right) ;\left(\mathrm{b}_{\mathrm{s}}\right) ; \mathrm{iy}\right]$ while for $\mathrm{y}=0$ it becomes ${ }_{\mathrm{r}} \Phi_{\mathrm{s}} \quad\left[\left(\mathrm{a}_{\mathrm{r}}\right) ;\left(\mathrm{b}_{\mathrm{s}}\right) ; \mathrm{x}\right]$.

3 PARTICULAR CASES

As particular cases of (2.5) and (2.6), we have the following interesting results:

$$
\begin{equation*}
{ }_{0} \mathbf{M}_{0}[-;-; q, z]=e_{q}(x) e_{q}(i y) \tag{3.1}
\end{equation*}
$$

${ }_{2} \mathbf{M}_{1}[\mathbf{a}, \mathbf{b} ; \mathbf{c} ; \mathbf{q}, \mathbf{z}]$,

$$
\begin{align*}
& =\frac{1}{(1-x)} \mathbf{a + b - c} \sum_{n=0}^{\infty} \frac{\left(q^{a}\right)_{n}\left(q^{b}\right)_{n}(i y)^{n}}{(q)_{n}\left(q^{c}\right)_{n}\left(x q^{a+b-c}\right)} . \\
& { }_{2} \Phi_{1}\left[\begin{array}{c}
{ }_{q} \mathbf{c}-\mathbf{a},{ }_{q} \mathbf{c}-\mathbf{b} ; \mathbf{x q} \mathbf{a}+\mathbf{b}-\mathbf{c}+\mathbf{n} \\
{ }_{q} \mathbf{c}+\mathbf{n} ;
\end{array}\right], \tag{3.2}
\end{align*}
$$

$$
\begin{array}{r}
0_{0} M_{1}[-; a ; q, z]=(q)_{-1}\left(-\frac{1}{\sqrt{x}}\right)^{a-1} \sum_{n=0}^{\infty} \frac{(y / \sqrt{x})^{n}}{(q)_{n}} \\
q^{j} a+n-1(2 i \sqrt{x}) \tag{3.3}
\end{array}
$$

Further, summing up the ${ }_{r} \Phi_{s}$-function by means of known summation theorems, we have

$$
\begin{equation*}
{ }_{1} M_{0}[a ;-; q, z]=\frac{1}{(1-x)_{a}}{ }_{1} \Phi_{0}\left[q^{a} ;-; \frac{i y}{\left[1-x q^{a}\right]}\right] \tag{3.4}
\end{equation*}
$$

${ }_{1} \mathrm{M}_{0}[\mathrm{a} ;-; \mathrm{q}, \mathrm{z}]=\frac{1}{(1-\mathrm{x})_{\mathrm{a}}}{ }_{1} \Phi_{1}\left[\mathrm{q}^{\mathrm{a}} ; \mathrm{x} \mathrm{q}^{\mathrm{a}} ; \mathrm{iy}\right]$,
${ }_{1} M_{0}[a ;-; q, z]=\frac{1}{(1-i y)_{a}}, \Phi_{0}\left[q^{a} ;-; \frac{x}{\left[1-i y q^{a}\right]}\right]$,
${ }_{1} M_{0}[a ;-; q, z]=\frac{1}{(1-i y)_{a}}{ }_{1} \Phi_{1}\left[q^{a} ;\right.$ iy $\left.^{a} ; x\right]$

\oint 4. INTEGRAL REPRESENTATIONS

We also note the following simple integral representations for ${ }_{2} \mathbf{M}_{1}[a, b ; c ; q, z]$ and ${ }_{3} M_{2}[a, b, c ; d, e ; g, z]{ }_{2} M_{1}[a, b ; c ; q, z]$
$=\frac{\Gamma_{q}(c)}{\Gamma_{q}(b) \Gamma_{q}(c-b)} \int_{0}^{1} t^{b-1}(1-q t) \underset{c-b-1}{ } 1^{M_{0}[a ;-; q, z t] d(t ; q),}$
provided R1 (b) $>0,|x|<1,|y|<1$
${ }_{3} \mathbf{M}_{2}[\mathrm{a}, \mathrm{b}, \mathbf{c} ; \mathrm{d}, \mathrm{e} ; \mathrm{q}, \mathrm{z}]=\frac{\Gamma_{\mathrm{q}}(\mathrm{d}) \Gamma_{\mathrm{q}}(\mathrm{e})}{\Gamma_{\mathrm{q}}(\mathrm{b}) \Gamma_{\mathrm{q}}(\mathrm{c}) \Gamma_{\mathrm{q}}(\mathrm{d}-\mathrm{b}) \Gamma_{\mathrm{q}}(\mathrm{e}-\mathrm{c})} \times$
$\int_{0}^{1} \int_{0}^{1} t^{b-1}(1-q t)_{d-b-1} v^{c-1}(1-q v)_{e-c-1} 1_{1} M_{0}[a ;-; z t v] d(t ; q) d(v ; q)$
provided $\mathrm{Rl}(\mathrm{b})>0, \mathrm{R} 1(\mathrm{c})>0,|\mathbf{x}|<1,|\mathrm{y}|<1$.
One can similarly, write down the integral representation for r_{S}-function.

\oint 5. CONTINUOUS DISCRETE HYPERGEOMETRIC FUNCTIONS

Any two discrete hypergeometric functions,
${ }_{\mathrm{r}} \mathrm{M}_{\mathrm{s}}\left[\left(\mathrm{a}_{\mathrm{r}}\right) ;\left(\mathrm{b}_{\mathrm{s}}\right) ; \mathrm{q}, \mathrm{z}\right]$ and ${ }_{\mathrm{r}} \mathrm{M}_{\mathrm{s}}\left[\left(\mathrm{a}_{\mathrm{r}}^{\prime}\right) ;\left(\mathrm{b}_{\mathrm{s}}^{\prime}\right) ; \mathrm{q}, \mathrm{z}\right]$
are said to be continuous, when all their parameters are equal except one pair, and this pair of parameter differs only by unity.

If we use the notations $\left(\alpha_{r},+i\right)_{n}$ and $\left(\alpha_{r},-i\right)_{n}$ to denote

$$
\left(\alpha_{1}\right)_{\mathrm{n}}\left(\alpha_{2}\right)_{\mathrm{n}} \ldots\left(\alpha_{\mathrm{i}-1}\right)_{\mathrm{n}}\left(\alpha_{\mathrm{i}}+1\right)_{\mathrm{n}}\left(\alpha_{\mathrm{i}+1}\right)_{\mathrm{n}} \ldots\left(\alpha_{\mathrm{r}}\right)_{\mathrm{n}}
$$

and

$$
\left(\alpha_{1}\right)_{\mathrm{n}}\left(\alpha_{2}\right)_{\mathrm{n}} \cdots\left(\alpha_{i-1}\right)_{\mathrm{n}}\left(\alpha_{i_{+1}}\right)_{\mathrm{n}}\left(\alpha_{i+1}\right)_{\mathrm{n}} \cdots\left(\alpha_{\mathrm{r}}\right)_{\mathrm{n}}
$$

respectively, where $1 \leq i \leq r$, with similar notations for (β_{s}), we have

$$
\begin{align*}
& \left.\mathbf{r} \mathbf{M}_{\mathrm{s}}\left[\alpha_{\mathrm{r}},+\mathrm{i}\right) ;\left(\beta_{\mathrm{s}}\right) ; \mathbf{q}, \mathrm{z}\right] \\
& \left.=\frac{1}{\left(1-q^{\alpha_{i}}\right)}\left\{{ }_{\mathrm{r}} \mathrm{M}_{\mathrm{s}}\left[\alpha_{\mathrm{r}}\right) ;\left(\beta_{\mathrm{s}}\right) ; \mathrm{q}, \mathrm{z}\right]-\mathrm{q}^{\alpha_{\mathrm{i}}}{ }_{\mathrm{r}} \mathrm{M}_{\mathrm{s}}\left[\left(\alpha_{\mathrm{r}}\right) ;\left(\beta_{\mathrm{s}}\right) ; q, \mathrm{qz}\right]\right\} \text {, } \tag{5.1}\\
& { }_{\mathrm{r}} \mathrm{M}_{\mathrm{s}}\left[\left(\alpha_{\mathrm{r}},-\mathrm{i}\right) ;\left(\beta_{\mathrm{s}}\right) ; \mathrm{q}, \mathrm{z}\right] \\
& =\left(1-q^{\alpha_{i}-1}\right) \sum_{n=0}^{\infty} \mathbf{q}^{\mathbf{n}\left(\alpha_{i}-1\right)}{ }_{\mathbf{r}} \mathbf{M}_{s}\left[\left(\alpha_{r}\right) ;\left(\beta_{s}\right) ; \mathbf{q}, \mathbf{q}^{n_{z}}\right] \text {, } \tag{5.2}
\end{align*}
$$

${ }_{r} M_{s}\left[\left(\alpha_{r}\right) ;\left(\beta_{s},+j\right) ; q, \mathbf{z}\right]=\left(1-q{ }^{\beta_{j}}\right) \sum_{n=0}^{\infty} q^{n \beta_{j}}{ }_{r} M_{s}\left[\left(\alpha_{r}\right) ;\left(\beta_{s}\right) ; q, q^{n_{z}}\right]$,
and

$$
\begin{align*}
&{ }_{\mathrm{r}} \mathrm{M}_{\mathrm{s}}\left[\left(\alpha_{\mathrm{r}}\right) ;\left(\beta_{\mathrm{s}}-\mathbf{j}\right) ; q, \mathrm{z}\right] \\
&= \frac{1}{\left(1-\boldsymbol{q}^{\beta_{\mathrm{J}}-1}\right)}{ }_{\mathrm{r}} \mathrm{M}_{\mathrm{s}}\left[\left(\alpha_{\mathrm{r}}\right) ;\left(\beta_{\mathrm{s}}\right) ; q, \mathrm{z}\right]-\mathrm{q}^{\beta_{\mathrm{j}}-1}{ }_{\mathrm{r}} \mathrm{M}_{\mathrm{s}}\left[\left(\alpha_{\mathrm{r}}\right) ;\left(\beta_{\mathrm{s}}\right) ; q, q \mathrm{q}\right] . \tag{5.4}
\end{align*}
$$

REFERENCES

[1] EXTON, H., q-Hypergeometric Functions and Applications. John Wiley and Sons (Halsted Press), New York; Ellis Horwood, Chichester (1983).
[2] GASPER, G. and RAhmAN, M., Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Volume 35. Cambridge University Press (1990).
[3] HAHN, W., Beitrage zür theorie der Heineschen Reihen, die 24 integrale der hypergeometrischen q-differenzengleichung, Das q-Analogen der Laplace Transformation, Math. Nachr., 2 (1949), pp. 340-379.
[4] HARMAN, C.J., A note on a discrete analytic function. Bull. Austral. Math. Soc., 10 (1974), pp. 123-134.
[5] HARMAN, C.J., A new definition of discrete analytic functions. Bull Austral. Math. Soc. 10 (1974), pp. 281-291.
[6] HARMAN, C.J., Polynomial in discrete geometric function theory. Ganita, 29 (1978), pp. 93-101.
[7] HARMAN, C.J., Discrete geometric function theory I. Applicable Analysis, 7 (1978), pp. 315-336.
[8] HARMAN, C.J., Discrete geometric function theory II. Applicable Analysis, 9 (1979), pp. 191-203.
[9] HARMAN, C.J., Discrete Analysis on a Radical Lattice, J. Math. Anal. and Appl. 79 (1981), pp. 323-330.
[10] JACKSON, F.H., On basic double hypergeometric functions. Quart. J. Math. (Oxford), 15 (1944), pp. 49-61.
[11] KHAN, M.A., Contribution to the theory of Basic Hypergeometric Series. Ph.D. Thesis, University of Lucknow (1977).
[12] KHAN, M.A., Transformations of Discrete Hypergeometric Functions. Mathematica Balkanica, New Series Vol. 6 (1992), Fase. 3, pp. 199-206.
[13] SLATER, L.J., Generalized hypergeometric functions, Cambridge University Press (1966).

