Commun. Fac. Sci. Univ. Ank. Series A V. 43. pp. 129–135 (1994)

NORMAL SUBGROUPS OF THE HECKE GROUP H $(\sqrt{2})^*$

I.N. CANGÜL

(Received July, 15, 1994; Accepted Dec. 22, 1994)

1. INTRODUCTION

Hecke groups $H(\lambda)$ are the discrete subgroups of PSL(2, **R**) (the group of orientation preserving isometries of the upper half plane U) generated by two linear fractional transformations

$$R(z) = -1/z$$
 and $T(z) = z + \lambda$

where $\lambda \in \mathbf{R}$, $\lambda \geq 2$ or $\lambda = \lambda_q = 2\cos(\pi/q)$, $q \in N$, $q \geq 3$. These values of λ are the only ones that give discrete groups, by a theorem of E. Hecke. We are going to be interested in the latter case $\lambda = \lambda_q$. The element S = RT is then elliptic of order q.

It is well-known that H (λ_q) is the free product of two cyclic groups of orders 2 and q, i.e.

$$\mathrm{H}(\lambda_q)\cong \mathrm{C}_2*\mathrm{C}_q$$

so that the signature of H (λ_q) is (O; 2, q, ∞).

Most important and worked Hecke group is the modular group $\Gamma = H(\lambda_3) = H(1)$. Its underlying field is Q, i.e. all coefficients are rational integers.

Next two important Hecke groups are those for q = 4 and 6. In these cases $\lambda_q = \sqrt{2}$ and $\sqrt{3}$, therefore underlying fields are quadratic extensions of Q by $\sqrt{2}$ dnd $\sqrt{3}$, respectively. Here we only discuss the case q = 4 (q = 6 is similar).

H (λ_4) is the only Hecke group, apart from Γ dnd H (λ_{σ}), whose elements are completely known. Indeed it consists of the set of all matrices of the following two types:

^{*} This work is produced from the author's PhD Thesis.

- (i) $\begin{bmatrix} a & b\sqrt{2} \\ c\sqrt{2} & d \end{bmatrix}$; ad-2be = 1,
- (ii) $\begin{bmatrix} a\sqrt{2} & b \\ c & d\sqrt{2} \end{bmatrix}$; 2ad-bc = 1.

Those of type (i) are called even while the others are called odd.

The set of all even elements form a normal subgroup, $H_e(\sqrt{2})$, of index 2 in $H(\sqrt{2})$, called the even subgroup. It is the free product of the infinite cyclic group Z with a finite cyclic group of order 2. Indeed, being odd elements, R and S both go to 2-cycles under the homomorphism

$$\mathrm{H}(\sqrt{2}) \longrightarrow \mathrm{H}(\sqrt{2}) / \mathrm{H}_{\mathrm{e}}(\sqrt{2}) \cong \mathrm{C}_{2},$$

i.e.

so by a theorem of D. Singerman [Si], the signature of $H_e(\sqrt{2})$ is (0; 2, ∞ , ∞). If we choose I, R as a Schreier transversal for $H(\sqrt{2})/H_e(\sqrt{2})$ then by the Reidemeister-Schreier method, $H_e(\sqrt{2})$ has the parabolic generators T and U = SR with their product TU being the elliptic generator of order 2.

 $H_e(\sqrt{2})$ is quite important amongs the normal subgroups of $H(\sqrt{2})$. It is one of the three normal subgroups with cyclic quotient C_2 , and contains infinitely many normal subgroups of $H(\sqrt{2})$.

H ($\sqrt{2}$) and H ($\sqrt{3}$) are the anly Hecke groups commensurable with the modular group Γ. Although a conjugate of H ($\sqrt{2}$) and Γ have a common subgroup, no common normal subgroup in both of them exists. To see this let us suppose there exists a normal subgroup N in Γ and H ($\sqrt{2}$)^M where H ($\sqrt{2}$)^M denotes the conjugation by M. Let η (N) be the normalizer of N in PSL (2, |R). Now H ($\sqrt{2}$)^M contains the element S^M of order 4 and S^M \in Γ. But η (N) contains Γ and S^M. As η (N) is also Fuchsian, this contradicts maximality of Γ (see [1]).

Here we are going to discuss some normal subgroups of H $(\sqrt{2})$. They seem to be more numerous than normal subgroups of Γ . Our main concern will be genus 0 and geneus 1 subgroups, congruence subgroups and some relations with the regular maps. Being a free product of two cyclic groups of orders 2 and 4, by the Kurosh subgroup theorem, $H(\sqrt{2})$ has two kinds of subgroups those which are free and those with torsion (being free product of C_2 's, C_4 's and Z's).

2. NORMAL SUBGROUPS OF GENUS O IN $H(\sqrt{2})$

Let N be such a subgroup. $H(\sqrt{2}) / N$ is a group of automorphisms of $U/N \cong$ Sphere $(U = U \cup Q \cup \{\infty\})$, so it must be isomorphic to a finite subgroup of SO(3), which is going to be a finite triangle group. These are known as $A_5 \cong (2, 3, 5)$, $S_4 \cong (2, 3, 4)$, $A_4 \equiv (2, 3, 3)$, $D_n \cong (2, 2, n)$ and $C_n \cong (1, n, n)$.

Let's first map H $(\sqrt{2})$ onto a cyclic group C_n . Since S must go to n-cycles, n must divide 4. Therefore n = 1, 2 or 4. Here N has the signature (O; $2^{(n)}$, 4/n, ∞) and therefore is isomorphic to the free product of $C_{4/n}$ and n C_2 's. It shall be denoted by $Y_n(\sqrt{2})$.

Secondly, by mapping onto the dihedral group $D_n \cong (2, n, 2)$ we similarly obtain a subgroup with signature $(0; 4/n^{(2)}, \infty^{(n)})$ where $n \mid 4$. We'll denote this one by $S_n(\sqrt{2})$. Note that $S_1(\sqrt{2})$ and $S_2(\sqrt{2})$ contain elements of finite order while $S_2(\sqrt{2})$ is free of rank 3.

Thirdly, if we map onto $S_4 \cong (2, 4, 3)$, we obtain a normal subgroup with signature (o; $\infty^{(8)}$) denoted by $T(\sqrt{2})$. It is isomorphic to a free group of rank 7.

We have already got 7 normal subgroups of genus 0. Apart from these, there is an infinite family of such subgroups, obtained by mapping onto $D_n \cong (2, 2, n)$, $n \in \mathbb{N}$. The obtained subgroup has signature $(0; 2^{(n)}, \infty, \infty)$ and will be denoted by $W_n(\sqrt{2})$. Each of these contains infinitely many others of the same kind since $W_n(\sqrt{2}) \supset W_{nk}(\sqrt{2})$, $k \in \mathbb{N}$. Note that $W_1(\sqrt{2}) = H_e(\sqrt{2})$ and also that $W_2(\sqrt{2}) = S_2(\sqrt{2})$.

Theorem 1. All normal subgroups of genus 0 in $H(\sqrt{2})$ are $H(\sqrt{2})$, $Y_2(\sqrt{2})$, $Y_4(\sqrt{2})$, $S_1(\sqrt{2})$, $S_4(\sqrt{2})$, $T(\sqrt{2})$ and $W_n(\sqrt{2})$ for $n \in \mathbb{N}$.

Therefore unlike odd q case (particularly modular group), we have infinitely many normal subgroups of genus 0.

3. FREE NORMAL SUBGROUPS OF $H(\sqrt{2})$

We first have

Lemma 1. The only normal subgroups of $H(\sqrt{2})$ containing elements of finite order are $H(\sqrt{2})$, $Y_2(\sqrt{2})$, $Y_4(\sqrt{2})$, $S_1(\sqrt{2})$ an $W_n(\sqrt{2})$, $n \in \mathbb{N}$.

Note that unlike odd q case (particularly modular group), $H(\sqrt{2})$ has infinitely many normal subgroups with elements of finite order. As a result we have.

Corollary 1. Let N be a normal subgroup of positive genus in $H(\sqrt{2})$. Then N is torsion-free.

Corollary 1 does not have a converse, i.e. there are free normal subgroups of $H(\sqrt{2})$ with genus 0.

Theorem 2. Let N be a non-trivial normal subgroup of $H(\sqrt{2})$ different from $H(\sqrt{2})$, $Y_2(\sqrt{2})$, $Y_4(\sqrt{2})$, $S_2(\sqrt{2})$ and $W_n(\sqrt{2})$, $n \in \mathbb{N}$. Then N is free.

It is well-known that a free normal subgroup N of $H(\sqrt{2})$ will have rank r = 2g + t-1, where t is the parabolic class number of N. Also if $[H(\sqrt{2}): N] = \mu$, then $4 \mid \mu$ as R goes to $\mu/2$ 2-cycles and S goes to $\mu/4$ 4-cycles. By the Riemann-Hurwitz formula the genus g of N is

$$g = 1 + \mu \frac{n-4}{8n}$$

Therefore for $g \neq 1$, $H(\sqrt{2})$ can only have finitely many normal free subgroups of genus g. For g = 1, using regular maps of type $\{4, 4\}$, we shall prove that $H(\sqrt{2})$ has infinitely many such subgroups, as the last equation suggests.

4. NORMAL SUBGROUPS OF GENUS 1 IN $H(\sqrt{2})$

Rosenberger and Kern-Isberner have discussed these subgroups in [6]. Here we consider them briefly using their connection with the regular maps.

Let N be a normal subgroup of genus 1 in $H(\sqrt{2})$. We know that N is free of rank r = t + 1, of level 4 and therefore of index μ divisible by 4, in $H(\sqrt{2})$. It is shown that each normal subgroup corresponds to a regular map the same genus (see [5]). As N has genus 1, the corresponding regular map M must be of type $\{4, 4\}$ since $S^4 = I$. These are classified as $\{4, 4\}_{r,s}$; $r, s \in N \cup \{0\}$. M has t vertices, 2t edges and t faces where $t = r^2 + s^2$. Each $\{4, 4\}_{r,s}$ will give us a normal subgroup N with index $\mu = 4$ $(r^2 + s^2)$ in $H(\sqrt{2})$, since |Aut M| = 4 $(r^2 + s^2)$. Hence we have

Theorem 3. H $(\sqrt{2})$ has infinitely many normal subgroups of genus 1.

Now
$$\mu = 4$$
 $(r^2 + s^2) = 4t$ implying that $t = r^2 + s^2$.

Let μ be given (equivalently t be given). We want to find the number $N_4(\mu)$ of normal subgroups of H $(\sqrt{2})$ with g = 1 and index μ .

The number of solutions of $t = r^2 + s^2$ is always divisible by 4. This is because all the pairs (r, s), (-r, -s), (-r, s) and (r, -s) give the same t. Therefore we have

Theorem 4. The number of normal subgroups of genus 1 with a given index $\mu = 4t$ in H $(\sqrt{2})$ is

$$N_4(\mu) = 1/4. \{(r, s) \in \mathbb{Z}^2 \mid r^2 + s^2 = t\}.$$

Rosenberger & Kern-Isberner proved this result using the multiplicativity of $N_4(\mu)$. The first few values of $N_4(\mu)$ are as follows:

μ	4	8	12	16	20	24	28	32	36	4 0
$N_4(\mu)$	1	1	0	1	2	0	0	1	1	2

5. NORMAL SUBGROUPS OF GENUS g≥2 AND REGULAR MAPS

We have already seen that for each $g \ge 2$, $H(\sqrt{2})$ has only finitely many normal subgroups with genus g. Therefore corresponding regular maps will also be finitely many. Those with genus $2 \le g \le 7$ are given in [2], [3] and [4].

Note that since q = 4, the only non-degenerate regular maps, we can have, are those of type $\{2, n\}$ or $\{4, n\}$. The former ones will correspond to $W_n(\sqrt{2})$ and having g = 0, will be regular n-gons on the sphere. Here we shall be interested in the latter type. Hence all regular maps will have type $\{4, 4\}$. We will denote the corresponding normal subgroup by [4, n]. Here n is the level of the subgroup.

6. PRINCIPAL CONGRUENCE SUBGROUPS OF H $(\sqrt{2})$

An important class of normal subgroups in H ($\sqrt{2}$) are the principal congruence subgroups. For modular group Γ , these are the groups

$$\Gamma(\mathbf{n}) = \left\{ egin{bmatrix} \mathbf{a} & \mathbf{b} \ \mathbf{c} & \mathbf{c} \end{bmatrix} \in \Gamma; \quad \left[egin{bmatrix} \mathbf{a} & \mathbf{b} \ \mathbf{c} & \mathbf{c} \end{bmatrix} \equiv \mp \quad \left[egin{bmatrix} -1 & 0 \ \mathbf{c} \end{bmatrix} & \mathbf{mod} \ \mathbf{n} \end{array} \right];$$

Let now p be prime. The principal congruence subgroup $\Gamma_p(\sqrt{2})$ of level p is defined by

$$\left\{ \begin{array}{cc} M = \begin{bmatrix} -a & b\sqrt{2} \\ & \sqrt{2} & d \end{bmatrix} \in H(\sqrt{2}) \colon M \equiv \mp I \mod p \right\}.$$

Note that by the definition

$$\Gamma_{
m p}(\sqrt{2}) \, < \, {
m H}_{
m e}(\sqrt{2})$$

If 2 is a square mod p (i.e. $p \equiv \pm 1 \mod 8$), then $\sqrt{2} \in GF(p)$. Otherwise $\sqrt{2}$ lies in $GF(p^2)$ (quadratic extension of GF(p)). Then we have finite groups $H_p(\sqrt{2}) \leq PSL(2, p)$ or $PSL(2, p^1)$, and a homo morphism

$$\theta$$
: H ($\sqrt{2}$) \longrightarrow H_p($\sqrt{2}$).

Let $K_p(\sqrt{2})$: = Ker θ . Obviously

 $\Gamma_{
m p}(\sqrt{2}) \trianglelefteq {
m K}_{
m p}(\sqrt{2}).$

It is not always the case that $K_p(\sqrt{2}) = \Gamma_p(\sqrt{2})$, e.g. if p = 7, then 2 is a square modulo 7. We know that $\Gamma_7(\sqrt{2}) \leq \text{He}(\sqrt{2})$. Now the odd element

$$\mathbf{M} = \begin{bmatrix} -5\sqrt{2} & 7\\ 7 & 5\sqrt{2} \end{bmatrix} \in \mathbf{K}_{7}(\sqrt{2})$$

as $\sqrt{2} = 3$ in GF(7), and therefore $K_7(\sqrt{2})$ contains an element which is not in $\Gamma_7(\sqrt{2})$. That is, the two congruence subgroups do not coincide for p = 7. Since $M \equiv I \mod 7$, $\Gamma_7(\sqrt{2})$ is a normal subgroup of $K_7(\sqrt{2})$ with index 2.

In general if 2 is a square mod p, we have

134

By [7], we find

$$H(\sqrt{2})/K_p(\sqrt{2}) \cong PSL(2, p)$$

and therefore

H
$$(\sqrt{2}) / \Gamma_p(\sqrt{2}) \simeq C_2 \times PSL (2, p).$$

If 2 is not a square mod p, then $K_p(\sqrt{2}) = \Gamma_p(\sqrt{2})$ and we have

$$\begin{array}{c} \mathrm{H}\,(\sqrt{2})\\ & |\\ \mathrm{He}(\sqrt{2})\\ & |\\ \mathrm{K}_{\mathrm{p}}(\sqrt{2}) = \Gamma_{\mathrm{p}}(\sqrt{2}). \end{array}$$

Therefore by [7],

$$\mathrm{H}\left(\sqrt{2}\right)/\Gamma_{\mathrm{p}}(\sqrt{2})\cong \mathrm{PGL}\left(2,\,\mathrm{p}\right).$$

Theorem 5. $H(\sqrt{2})/K_{p}(\sqrt{2}) \cong \begin{cases} PSL(2, p) & \text{if } p \equiv \pm 1 \mod 8, \\ PGL(2, p) & \text{if } p \equiv \pm 3 \mod 8, \\ C_{2} & \text{if } p = 2, \end{cases}$

$$\mathrm{H}\left(\sqrt{2}\right)/\Gamma_{\mathrm{p}}(\sqrt{2}) \cong \begin{cases} C_{2} \times 1 \operatorname{SL}\left(2, \, p\right) & \text{if } p \equiv \pm 1 \mod 3, \\ \mathrm{PGL}\left(2, \, p\right) & \text{if } p \equiv \pm 3 \mod 3, \\ \mathrm{D}_{4} & \text{if } p \equiv 2. \end{cases}$$

Therefore if p is an odd prime, then both congruence subgroups are free, while for p = 2, $K_2(\sqrt{2}) = H_e(\sqrt{2})$ and $\Gamma_2(\sqrt{2}) = W_4(\sqrt{2})$.

REFERENCES

- [1] A.F. BEARDON., The Geometry of Discrete Groups, Graduate Texts in Maths., 91, Springer -Berlin, (1983).
- [2] H.S.M. COXETER & W.O.J. MOSER., Generators and Relations for Discrete Groups, Springer-Berlin, (1957).
- [3] D. GARBE, Über die regularen Zerlegungen geschlossener orientierbarer Flachen, reine. angew. Math., 237 (1969), 39-55.
- [4] D. GARBE., A Remark on Non-symmetric Compact Riemann Surfaces, Arch. der Math., 30 (1978), 435-437.
- [5] G.A. JONES., & D. SINGERMAN., Theory of Maps on Orientable Surfaces, Proc. L.M.S. (3) 37 (1978), 273–307.
- [6] G. KERN-ISBERNER., & C. ROSENBERGER., Normalteiler vom Geschlecht eins in freien Produkten endlicher zyklischer Gruppen, Results in Maths., 11 (1987), 272–288.
- [7] A.M. MACBEATH., Generators of the Linear Fractional Groups, Proc. Symp. Pure Math., 12 (1969), A.M.S., 14–32.
- [8] D. SINGERMAN., Subgroups of Fuchsian Groups and Finite Permutation Groups, Bull. L.M.S., 2 (1970), 319–323.