# NORMAL SUBGROUPS OF THE HECKE GROUP H ( $\sqrt{\mathbf{2}} \mathbf{)}^{*}$ 

I.N. CANGÜL
(Received July, 15, 1994; Accepted Dec. 22, 1994)

## 1. INTRODUCTION

Hecke groups $H(\lambda)$ are the discrete subgroups of $\operatorname{PSL}(2, \mathbf{R})$ (the group of orientation preserving isometries of the upper half plane $U$ ) generated by two linear fractional transformations

$$
R(z)=-1 / z \text { and } T(z)=z+\lambda
$$

where $\lambda \in R, \lambda \geq 2$ or $\lambda=\lambda_{q}=2 \cos (\pi / q), q \in N, q \geq 3$. These values of $\lambda$ are the only ones that give discrete groups, by a theorem of E . Hecke. We are going to be interested in the latter case $\lambda=\lambda_{\mathrm{q}}$. The element $S=R T$ is then elliptic of order $q$.

It is well-known that $H\left(\lambda_{q}\right)$ is the free product of two cyclic groups of orders 2 and q, i.e.

$$
H\left(\lambda_{q}\right) \cong \mathrm{C}_{2} * \mathrm{C}_{\mathrm{q}}
$$

so that the signature of $H\left(\lambda_{q}\right)$ is $(0 ; 2, q, \infty)$.
Most important and worked Hecke group is the modular group $\Gamma=H\left(\lambda_{3}\right)=H(1)$. Its underlying field is $Q$, i.e. all coefficients are rational integers.

Next two important Hecke groups are those for $q=4$ and 6. In these cases $\lambda_{q}=\sqrt{2}$ and $\sqrt{3}$, therefore underlying fields are quadratic extensions of $Q$ by $\sqrt{2}$ dnd $\sqrt{3}$, respectively. Here we only discuss the case $q=4$ ( $q=6$ is similar).
$H\left(\lambda_{4}\right)$ is the only Hecke group, apart from $\Gamma$ dnd $H\left(\lambda_{\sigma}\right)$, whose elements are completely known. Indeed it consists of the set of all matrices of the following two types:

[^0]\[

$$
\begin{array}{ll}
{\left[\begin{array}{cc}
a & b \sqrt{2} \\
c \sqrt{2} & d
\end{array}\right]} & ; a d-2 b c=1 \\
{\left[\begin{array}{cc}
a \sqrt{2} & b \\
c & d \sqrt{2}
\end{array}\right]} & ; 2 a d-b c=1 \tag{ii}
\end{array}
$$
\]

Those of type (i) are called even while the others are called odd.
The set of all even elements form a normal subgroup, $\mathrm{H}_{\mathrm{e}}(\sqrt{ } \overline{2})$, of index 2 in $H(\sqrt{ })$, called the even subgroup. It is the free product of the infinite cyclic group Z with a finite cyclic group of order 2. Indeed, being odd elements, $R$ and $S$ both go to 2-cycles under the homomorphism

$$
\mathrm{H}(\sqrt{ } \overline{2}) \longrightarrow \mathrm{H}\left(\sqrt{ } \overline{2}^{2}\right) / \mathrm{H}_{\mathrm{e}}(\sqrt{ } \overline{2}) \cong \mathrm{C}_{2}
$$

i.e.

$$
\begin{aligned}
& R \longrightarrow\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
& \mathrm{S} \longrightarrow\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
& \mathrm{T} \longrightarrow(1)(2),
\end{aligned}
$$

so by a theorem of D . Singerman [Si], the signature of $\mathrm{H}_{e}(\sqrt{ } \mathbf{2})$ is $(0 ; 2, \infty, \infty)$. If we choose $I, R$ as a Schreier transversal for $\mathrm{H}(\sqrt{2}) / \mathrm{H}_{\mathrm{e}}(\sqrt{ } / \overline{2})$ then by the Reidemeister-Schreier method, $\mathrm{H}_{\mathrm{e}}(\sqrt{ } \overline{2})$ has the parabolic generators $T$ and $U=S R$ with their product $T U$ being the elliptic generator of order 2.
$H_{e}(\sqrt{2})$ is quite important amongs the normal subgroups of $H(\sqrt{2})$. It is one of the three normal subgroups with cyclic quotient $\mathrm{C}_{2}$, and contains infinitely many normal subgroups of $\mathbf{H}(\sqrt{ } \overline{2})$.
$H(\sqrt{2})$ and $H(\sqrt{3})$ are the anly Hecke groups commensurable with the modular group $\Gamma$. Although a conjugate of $H(\sqrt{2})$ and $\Gamma$ have a common subgroup, no common normal subgroup in both of them exists. To see this let us suppose there exists a normal subgroup N in $\Gamma$ and $\mathrm{H}(\sqrt{ })^{\mathrm{M}}$ where $\mathrm{H}(\sqrt{2})^{\mathrm{M}}$ denotes the conjugation by M . Let $\eta(\mathbb{N})$ be the normalizer of N in $\operatorname{PSL}(2, \mid R)$. Now $H(\sqrt{2})^{\mathrm{M}}$ contains the element $S^{M}$ of order 4 and $S^{M} \in \Gamma$. But $\eta(N)$ contains $\Gamma$ and $S^{M}$. As $\eta(N)$ is also Fuchsian, this contradicts maximality of $\Gamma$ (see [1]).

Here we are going to discuss some normal subgroups of $H(\sqrt{2})$. They seem to be more numerous than normal subgroups of $\Gamma$. Our main concern will be genus 0 and geneus 1 subgroups, congruence subgroups and some relations with the regular maps.

Being a free product of two cyclic groups of orders 2 and 4, by the Kurosh subgroup theorem, $H(\sqrt{ } 2)$ has two kinds of subgroups those which are free and those with torsion (being free product of $\mathrm{C}_{2}$ 's, $\mathrm{C}_{4}$ 's and Z's).

## 2. NORMAL SUBGROUPS OF GENUS O IN $H(\sqrt{ } / \overline{2})$

Let $N$ be such a subgroup. $H(\sqrt{2}) / N$ is a group of automorphisms of $\mathrm{U} / \mathbf{N} \cong \operatorname{Sphere}(\mathrm{U}=\mathrm{U} \cup Q \cup\{\infty\}$ ), so it must be isomorphic to a finite subgroup of $\mathrm{SO}(3)$, which is going to be a finite triangle group. These are known as $A_{5} \cong(2,3,5), \quad S_{4} \cong(2,3,4), \quad A_{4} \equiv(2,3,3)$, $\mathrm{D}_{\mathrm{n}} \cong(2,2, \mathrm{n})$ and $\mathrm{C}_{\mathrm{n}} \cong(1, \mathrm{n}, \mathrm{n})$.

Let's first map $H(\sqrt{2})$ onto a cyclic group $C_{n}$. Since $S$ must go to $n$-cycles, $n$ must divide 4 . Therefore $n=1,2$ or 4 . Here $N$ has the signature $\left(\mathrm{O} ; 2^{(\mathrm{n})}, 4 / \mathrm{n}, \infty\right)$ and therefore is isomorphic to the free product of $\mathrm{C}_{4 / \mathrm{n}}$ and $n \mathrm{C}_{2}$ 's. It shall be denoted by $\mathrm{Y}_{\mathrm{n}}(\sqrt{2})$.

Secondly, by mapping onto the dihedral group $D_{n} \cong(2, n, 2)$ we similarly obtain a subgroup with signature $\left(0 ; 4 / n^{(2)}, \infty^{(n)}\right.$ ) where $n \mid 4$. We'll denote this one by $S_{n}(\sqrt{2})$. Note that $S_{1}(\sqrt{2})$ and $S_{2}(\sqrt{2})$ contain elements of finite order while $S_{2}(\sqrt{2})$ is free of rank 3.

Thirdly, if we map onto $\mathrm{S}_{4} \cong(2,4,3)$, we obtain a normal subgroup with signature (o; $\infty{ }^{(8)}$ ) denoted by $T(\sqrt{2})$. It is isomorphic to a free group of rank 7.

We have already got 7 normal subgroups of genus 0 . Apart from these, there is an infinite family of such subgroups, obtained by mapping onto $D_{n} \cong(2,2, n), n \in N$. The obtained subgroup has signature $\left(0 ; 2^{(n)}, \infty, \infty\right)$ and will be denoted by $W_{n}(\sqrt{2})$. Each of these contains infinitely many others of the same kind since $W_{n}(\sqrt{ } 2) \triangleright W_{n k}(\sqrt{ } \overline{2})$, $k \in N$. Note that $W_{1}(\sqrt{2})=H_{e}(\sqrt{2})$ and also that $W_{2}(\sqrt{2})=S_{2}(\sqrt{2})$.

Theorem 1. All normal subgroups of genus 0 in $H(\sqrt{ } \overline{2})$ are $H(\sqrt{2}), \quad Y_{2}(\sqrt{2}), Y_{4}(\sqrt{2}), S_{1}(\sqrt{2}), S_{4}(\sqrt{2}), T(\sqrt{2})$ and $W_{n}(\sqrt{2})$ for $\mathbf{n} \in \mathbf{N}$.

Therefore unlike odd q case (particularly modular group), we have infinitely many normal subgroups of genus 0 .

## 3. FREE NORMAL SUBGROUPS OF H( $\sqrt{2}$ )

We first have

Lemma 1. The only normal subgroups of $H(\sqrt{ } 2)$ containing elements of finite order are $H(\sqrt{2}), \quad \mathbf{Y}_{2}(\sqrt{2}), \quad Y_{4}(\sqrt{2}), S_{1}(\sqrt{2})$ an $W_{n}(\sqrt{2})$, $\mathbf{n} \in \mathbf{N}$.

Note that unlike odd $q$ case (particularly modular group), $\mathrm{H}(\sqrt{2})$ has infinitely many normal subgroups with elements of finite order. As a result we have.

Corollary 1. Let N be a normal subgroup of positive genus in $\mathbf{H}(\sqrt{2})$. Then $\mathbf{N}$ is torsion-free.

Corollary 1 does not have a converse, i.e. there are free normal subgroups of $H(\sqrt{2})$ with genus 0 .

Theorem 2. Let N be a non-trivial normal subgroup of $\mathrm{H}(\sqrt{2})$ different from $H(\sqrt{2}), Y_{2}(\sqrt{2}), Y_{4}(\sqrt{ } / 2), S_{2}(\sqrt{2})$ and $W_{n}(\sqrt{2}), \mathbf{n} \in \mathbb{N}$. Then N is free.

It is well-known that a free normal subgroup N of $\mathrm{H}(\sqrt{ } / 2)$ will have rank $\mathbf{r}=2 \mathrm{~g}+\mathrm{t}-1$, where t is the parabolic class number of N . Also if $[H(\sqrt{ } 2): \mathbf{N}]=\mu$, then $4 \mid \mu$ as $\mathbf{R}$ goes to $\mu / 2$ 2-cycles and $\mathbf{S}$ goes to $\mu / 4$ 4-cycles. By the Riemann-Hurwitz formula the genus g of N is

$$
\mathbf{g}=1+\mu \frac{\mathbf{n}-4}{8 \mathbf{n}}
$$

Therefore for $\mathrm{g} \neq \mathrm{l}, \mathrm{H}(\sqrt{2})$ can only have finitely many normal free subgroups of genus g . For $\mathrm{g}=1$, using regular maps of type $\{4,4\}$, we shall prove that $H(\sqrt{2})$ has infinitely many such subgroups, as the last equation suggests.

## 4. NORMAL SUBGROUPS OF GENUS 1 IN $\mathrm{H}(\sqrt{ } \mathbf{2})$

Rosenberger and Kern-Isberner have discussed these subgroups in [6]. Here we consider them briefly using their connection with the regular maps.

Let N be a normal subgroup of genus 1 in $\mathrm{H}(\sqrt{2})$. We know that N is free of rank $\mathbf{r}=\mathbf{t}+1$, of level 4 and therefore of index $\mu$ divisible by 4 , in $H(\sqrt{2})$. It is shown that each normal subgroup corresponds to a regular map the same genus (see [5]). As N has genus 1 , the corresponding regular map $M$ must be of type $\{4,4\}$ since $S^{4}=\mathrm{I}$. These are classified as $\{4,4\} r, s ; r, s \in N \cup\{0\}$. $M$ has $t$ vertices, $2 t$ edges
and $t$ faces where $t=r^{2}+s^{2}$. Each $\{4,4\}$ r,s will give us a normal subgroup $N$ with index $\mu=4\left(\mathbf{r}^{2}+\mathrm{s}^{2}\right)$ in $H(\sqrt{2})$, since $\mid$ Aut $M \mid=$ $4\left(r^{2}+s^{2}\right)$. Hence we have

Theorem 3. $H(\sqrt{ })$ has infinitely many normal subgroups of genus 1.

Now $\mu=4\left(r^{2}+s^{2}\right)=4 t$ implying that $t=r^{2}+s^{2}$.
Let $\mu$ be given (equivalently $t$ be given). We want to find the number $N_{4}(\mu)$ of normal subgroups of $H(\sqrt{2})$ with $g=1$ and index $\mu$.

The number of solutions of $t=r^{2}+s^{2}$ is always divisîble by 4. This is because all the pairs $(r, s),(-r,-s),(-r, s)$ and ( $r,-s)$ give the same $t$. Therefore we have

Theorem 4. The number of normal subgroups of genus 1 with a given index $\mu=4 \mathrm{t}$ in $\mathrm{H}(\sqrt{2})$ is

$$
\mathbf{N}_{4}(\mu)=1 / 4 .\left\{(\mathbf{r}, \mathrm{s}) \in \mathbf{Z}^{2} \mid \mathbf{r}^{2}+\mathrm{s}^{2}=\mathbf{t}\right\}
$$

Rosenberger \& Kern-Isberner proved this result using the multiplicativity of $\mathbf{N}_{4}(\mu)$. The first few values of $\mathbf{N}_{4}(\mu)$ are as follows:

$$
\frac{\mu}{\mathbf{N}_{4}(\mu)} \| \begin{array}{rrrrrrrrrr}
4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 \\
\hline 1 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 1 & 2
\end{array}
$$

## 5. NORMAL SUBGROUPS OF GENUS $g \geq 2$ AND REGULAR MAPS

We have already seen that for each $\mathrm{g} \geq 2, \mathrm{H}(\sqrt{2})$ has only finitely many normal subgroups with genus $g$. Therefore corresponding regular maps will also be finitely many. Those with genus $2 \leq \mathrm{g} \leq 7$ are given in [2], [3] and [4].

Note that since $q=4$, the only non-degenerate regular maps, we can have, are those of type $\{2, n\}$ or $\{4, n\}$. The former ones will correspond to $W_{n}(\sqrt{2})$ and having $g=0$, will be regular $n$-gons on the sphere. Here we shall be interested in the latter type. Hence all regular maps will have type $\{4,4\}$. We will denote the corresponding normal subgroup by $[4, n]$. Here $n$ is the level of the subgroup.

## 6. PRINCIPAL CONGRUENCE SUBGROUPS OF H ( $\sqrt{ } \overline{2})$

An important class of normal subgroups in $H(\sqrt{2})$ are the principal congruence subgroups. For modular group $\Gamma$, these are the groups

$$
\Gamma(\mathrm{n})=\left\{\left|\begin{array}{cc}
\mathbf{a} & \mathrm{b}^{-} \\
\mathrm{c} & \mathbf{d}_{-}
\end{array}\right| \in \Gamma:\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b}^{-} \\
\mathbf{c} & \mathbf{d}_{-}
\end{array}\right| \equiv \mp\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right| \bmod \mathbf{n}\right\}
$$

Let now $p$ be prime. The principal congruence subgroup $\Gamma_{p}(\sqrt{2})$ of level $p$ is defined by

$$
\left\{\mathrm{M}=\left|\begin{array}{cc}
a & b \sqrt{2} \\
0 \sqrt{2} & d
\end{array}\right| \in \mathrm{H}(\sqrt{2}): \mathrm{M} \equiv \mp \mathrm{I} \operatorname{modp}\right\}
$$

Note that by the definition

$$
\Gamma_{\mathrm{p}}(\sqrt{2}) \triangleleft \mathrm{H}_{\mathrm{e}}(\sqrt{2}) .
$$

If 2 is a square $\bmod p($ i.e. $p \equiv \pm 1 \bmod 8)$, then $\sqrt{2} \in G F(p)$. Otherwise $\sqrt{2}$ lies in $\operatorname{GF}\left(\mathrm{p}^{2}\right)$ (quadratic extension of $\mathrm{GF}(\mathrm{p})$ ). Then we have finite groups $\mathrm{H}_{\mathrm{p}}(\sqrt{2}) \leq \operatorname{PSL}(2, \mathrm{p})$ or PSL $\left(2, \mathrm{p}^{1}\right)$, and a homo morphism

$$
\theta: \mathrm{H}(\sqrt{2}) \longrightarrow \mathrm{H}_{\mathrm{p}}(\sqrt{ } \mathbf{2}) .
$$

Let $\mathrm{K}_{\mathrm{p}}(\sqrt{ } \mathbf{2}):=$ Ker 0 . Obviously

$$
\Gamma_{\mathrm{p}}(\sqrt{ } \overline{2}) \unlhd \mathrm{K}_{\mathrm{p}}(\sqrt{ } \overline{2}) .
$$

It is not always the case that $K_{p}(\sqrt{2})=\Gamma_{p}(\sqrt{2})$, e.g; if $p=7$, then 2 is a square modulo 7 . We know that $\Gamma_{7}(\sqrt{2}) \unlhd H e(\sqrt{2})$. Now the odd element

$$
\mathbf{M}=\left|\begin{array}{cc}
5 \sqrt{2} & 7 \\
7 & 5 \sqrt{2}
\end{array}\right| \in \mathrm{K}_{7}(\sqrt{ } \sqrt{2})
$$

as $\sqrt{2}=3$ in $\operatorname{GF}(7)$, and therefore $\mathrm{K}_{7}(\sqrt{2})$ contains an element which is not in $\Gamma_{7}(\sqrt{ } 2)$. That is, the two congruence subgroups do not coincide for $p=7$. Since $M \equiv I \bmod 7, \Gamma_{7}(\sqrt{2})$ is a normal subgroup of $\mathrm{K}_{7}(\sqrt{ } 2)$ with index 2 .

In general if 2 is a square $\bmod p$, we have


By [7], we find

$$
\mathrm{H}(\sqrt{2}) / \mathbf{K}_{\mathrm{p}}(\sqrt{2}) \cong \operatorname{PSL}(2, \mathrm{p})
$$

and therefore

$$
\mathrm{H}(\sqrt{2}) / \Gamma_{\mathrm{p}}(\sqrt{2}) \cong \mathrm{C}_{2} \times \operatorname{PSL}(2, \mathrm{p})
$$

If 2 is not a square $\bmod p$, then $K_{p}(\sqrt{2})=\Gamma_{p}(\sqrt{2})$ and we have


Therefore by [7],

$$
H(\sqrt{2}) / \Gamma_{\mathrm{p}}(\sqrt{2}) \cong \mathrm{PGL}(2, \mathrm{p})
$$

Theorem 5. $\mathrm{H}(\sqrt{ } \overline{2}) / \mathrm{K}_{\mathrm{p}}(\sqrt{ } \overline{2}) \cong\left\{\begin{array}{cl}\mathrm{PSL}(2, \mathrm{p}) & \text { if } \mathrm{p} \equiv \pm 1 \bmod 8, \\ \mathrm{PGL}(2, \mathrm{p}) & \text { if } \mathrm{p} \equiv \pm 3 \bmod 8, \\ \mathrm{C}_{2} & \text { if } \mathrm{p}=2,\end{array}\right.$

$$
H(\sqrt{2}) / \Gamma_{\mathrm{p}}(\sqrt{2}) \cong \begin{cases}\mathrm{C}_{2} \times \operatorname{PSL}(2, \mathrm{p}) & \text { if } \mathrm{p} \equiv \pm 1 \bmod 8 \\ \operatorname{PGL}(2, \mathrm{p}) & \text { if } p \equiv \pm 3 \bmod 8 \\ \mathrm{D}_{4} & \text { if } \mathrm{p} \equiv 2\end{cases}
$$

Therefore if $p$ is an odd prime, then both congruence subgroups are free, while for $\mathbf{p}=2, \mathrm{~K}_{2}(\sqrt{ } \overline{2})=\mathbf{H}_{e}(\sqrt{ } / \overline{2})$ and $\Gamma_{2}(\sqrt{2})=\mathbf{W}_{4}(\sqrt{2})$.

## REFERENCES

[1] A.F. BEARDON., The Geometry of Discrete Groups, Graduate Texts in Maths., 91, Springer -Berlin, (1983).
[2] H.S.M. COXETER \& W.O.J. MOSER., Generators and Relations for Discrote Groups, Springer-Berlin, (1957).
[3] D. GARBE, Über die regularen Zerlegungen geschlossener orientierbarer Flachen, reine. angew. Math., 237 (1969), 39-55.
[4] D. GARBE., A Remark on Non-symmetric Compact Riemann Surfaces, Arch. der Math., 30 (1978), 435-437.
[5] G.A. JONES., \& D. SINGERMAN., Theory of Maps on Orientable Surfaces, Proc. L.M.S. (3) 37 (1978), 273-307.
[6] G. KERN-ISBERNER., \& G. ROSENBERGER., Normalteiler vom Geschlecht eins in freien Produkten endlicher zyklischer Gruppen, Results in Maths., 11 (1987), 272-288.
[7] A.M. MACBEATH., Generators of the Linear Fractional Groups, Proc. Symp. Pure Math., 12 (1969), A.M.S., 14-32.
[8] D. SINGERMAN., Subgroups of Fuchsian Groups and Finite Permutation Groups, Bull, L.M.S., 2 (1970), 319-323.


[^0]:    * This work is produced from the author's PhD Thesis.

