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ABSTRACT

In this note we summarize {3], [4]and [9] which are interested with cross ratio over
alternative or local alternative rings. In [9], there is an algebraic expression which is not true
[6 ], [7}. For thié, we give some proofs by using formal calculations. And we give some basic
results which are useful for calculations.

1. INTRODUCTION

When A is an alternative division ring with char 5~ 2, the defi-
nition of cross-ratio over the projective line which is coordinatized by
A is given by Schleiermacher (1965, [18]). In 1980, Ferrar [9] used
this definition and did a similar work. Blunck (1991, [3]) “extended”
this definition to the case of A having an arbitrary characteristic. In
[6] and [7] definition of the cross-ratio is extended to the whole Mu-
fang plane which is coordinatized by A.

More information about the geometric and algebraic preliminaries
may be found in [107], [13], [15], [19] and [12], [16] respectively.

2, BASIC CONCEPTS

Let (P, £, €) be an incidence structure whose points and lines
are denoted by P, Q, R, ... and |, m, n, ... respectively.

Definition. An incidence structure (P, f5, €) is called a projective
plane if the following axioms are satisfied:

P1) Any two distinct points are incident with a unique line.
P2) Any two distinct lines are incident with at least one point.

P3) There exist a set of four poins, no three collinear.
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Definition. Let (P, £, €) be incidence structure and be equ-

ivalence relation on P and on f. We called “0” as neighbouring. Then
M = (P, £, &, 0) is called projective Klingenberg plane (PK-plane),

if the following axioms are satisfied:

PK1) Any two non—neighbouring points are incident with a unique

hine.

PK2) Any two non-neighbouring lines are incident with a unique
point.

PK3) There is a projective plane M* = (P*, f*, €) and an inci-
dence structure epimorphism W':M —— M* such that the conditions
Y(P) =9(Q) <P 1Q, V() =¥(m) < { [ m held for all P, Q & ¢,
fHme L.

.. In PK3, M* is the canonic image of M.

- If there exist a Q € P such that P [ Q and Q € { then we say that
a point P is near a line { and we denote this by P [] /.

In PK-planes, neighbouring points may have no, unique, or several
joining lines. And necighbouring lines may have no, unique, or several
intersection points.

Definition. Let M be a PK-planec.

(i) If any two points of M have at least one joining line then M
is called punctally cohesive.

(ii) If any two lines of M have at least onc intersection point then
M is called lineary cohesive.

If M PK-plane is punctally and lineary cohesive than M is called

cohesive.

A projective Hjelmslev plane is a cohesive PK-plane, such that
any two points with exactly one joining line are nonneighbouring.

Now, we recall some notions for M PK-planes (cf. [2]):

If ¢ is an incidence structure automorphism such that preserving
neighbour relation then ¢ is called a collineatinon of M. A centre and
an axis of a collineation are defined as usual (cf. [17]). A (¢, a)—colli-
ncation ® is a collineation with center C and axis «. If C € o then (C, «)
—collineation ® is called (C, «)-elation (or elation). M is called (C, «)-
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transitive, if for all P, Q e, P, QQC, P, Q, [ « P, Q, C collinear,
there is a (C, «)-collineation mapping P to Q.

Definition: Let M be a PK-plane. If M is (C, «)-transitive for

all (G, «), Cea, then M is called a Moufang—Klingenberg plane (MK-
planc)

It M is MK-planc the canonic image M* is a Moufang plane.

MK-plancs are coordinatized with local alternative rings. In [2],
MK-planes are coordinatized, using Duga’s method (c.f. [8]). Before
we are going to summarize their results we recall the definition of local
alternative rings:

Definition. An alternative ring R with identity clement 1 is called
local, if the I of its non-units is an ideal.

It is shown ([2]) that for cvery local alternative ring there is a
corresponding coordinate plane, which is an MK-plane, and conversely,
that every MK-plane may be coordinatized by local alterative ring.
Now, we are going to summarize their coordinatization (For more
information about coordinatization of MK-planes se [2], [5]. [14]):

Let M be'a MK-plane and (O, E, U, V) a basis of M i.e. its canonic
image (Y'(0), W(E), ¥(U), ¥(V)) is a non-degenerate quadrangle in
M*. Let { = OE, W: =/ nUV, R: = {PeP| Pe, PQ W}, I: = {PeR |
PO} espesially o: = 0, 1: = E, Let g,: = UV and if Pe/, P O g,
then, when xeR, (x, x, 1) is taken as the coordinates of P. The points
PeP of M get their coordinates as follows:

) POgeo =P =(x,v,1) where (x,x,1) =PV n{, (y,y,1) =
PUNny.

() P [ g, PD V=P=(, y, z) where (1, z, 1) = (PV nUE)
ONEV, (1,y,1) = 0P NEV

) POV = P = (w, 1, z) where (1,1, 2) =PU Nl (w,1,1) =
OP NEU where w, zel.

And lines gef of M get their coordinates as follows:
(@) eV =g = [m, 1, p] where (I,m,1) =(gNgs) ONEV,
(0 Pa 1) g n OV.

(i) gV, g0gew =g = [1,n,p] where (n,1,1) =(g Ngw) O NEU
(p, 0, )= g NOU.

(iii) g [ :500 = g = [q, n, 1] where (1,0, q) = gnOU, (0,1, n)
=g nNoOVv

where ¢, nel.
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Now we are going to give the algebraic correspondings of the inci-
dence relation:

<y, 1)emLpley=xm+p

(Ly,z)e[m, 1, p]«y =m+ zp
(W, 1,2) ¢ [m, 1, p]

(x,y,z) € [Lin,p]ex =yn+p

(w,1,2) e [I,n,p] < w =n + zp
(Ly,2) ¢ [Ln,p]

(Ly.z) € [qg:n, 1] <z =q+ yn

w,1,2)e[qon, 1]z =wqg-+n
(% y.1) ¢ [q,n, 1].

Therefore, the lines may be given as follows with the incidence
points:

[m,1,p] = {(x,xm + p, 1) | xeR}U{(1, zp, + m, z) | zel} .
[Ln,p]l ={(yn-+p,y.1) | yeR} U{(zp + n, 1, 2) | z¢l}

[4: 0, 1] = {(1. y, yn + q) | yeR} U{(w, 1, wq + n) | welj.
Now we can state;

Theorem 1. (cf. [2]) Let M be a MK—plane coordinatized as above.
Then (R, + .) is a local alternative ring with I the ideal of nonunits.
Neighbourhood in M is characterized by

(%1p X2, x3) O (Y- Y2, ¥3) & xi-yi €l i = 1,2, 3
X X2, X3] O [¥1> V2o ¥3] < xi-yiel, i =1, 2, 3

Conversely, given a local alternative ring R one can construct

an MK-plane M (R) over R.

3. CONJUGACY AND CROSS-RATIO IN LOCAL ALTERNATIVE
RINGS ‘

Let A be an alternative ring with identity element. On the R: = R
() = A + Ae, (¢2 = 0) the operations (+) and (.) may be defined as
follows: :
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(a; + aze) + (by + bye) = a; + b; -- (a + by)e
(a; + ase) (b. + bye) = a;b; + (a;by + asby)e
Then, there is a local alternative ring I = Ac is ideal of non units (cf.
[4)). _,
In this section, genéralizing the well known ones e.g. [9] or {18],

the definition of cross-ratio is given on the projective line which is
coordinatized with the local alternative rings like as R.

In [9], the concept of cross-ratio over the projective line which
is coordinatized by alternative division ring A is given as conjugacy
class, i.e.

a=Db <« 3 unit < such that a.=c¢ 1he.

29

Before the state the characterization of “=’" on R we want to

give some concepts which are given in [9] for A:

A is a Cayley division algebra over its center Z which is equipped
with an involutory anti-automorphism K:x —— %. The norm form
N: x—=> N (x):=x% (==%x) is a quadratic form which js multiplicative
in the sense that N (ab) = N (a) N (b) for all a,b € A. The trace
linear form on A is defined by T:x -— T (x): =x + %. The trace
form is symetric (T(ab) = T(ba)) and associative (T(a(bc)) =T ((ab)
¢)). Then the following characterization of conjugacy in propper alter-
native fields may be given as follows:

Lemma 1. Let A be non-associative alternative division ring.

Then all a,bcA a=b< N(a) =N(b) and T (a) =T (b).
More information about the norm and trace form are givenin
[11] and [16]. ‘
By Lemma 1 “=
tive divisien ring A.

>’ is an equivalence relation over every altena-

The concepts of involutory anti-automorphism, norm and trace
form are may be extented over R as follows:

Let x = x; + xp¢ €R. The map
K:R—R
x> K (x): = &1 = & + %p¢

is involutory Z(c) (= Z + Zc)-linear anti-automorphism over R. The
norm form N (x): = x&% (= %x) is multiplicative and trace form

T(x): = x 4+ & is Z(c)-linear..
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Lemma 2. Let a, b, ceR, a = a; + ae.
i) There is a symetric bilinear form f such that
N (a) = N (a) + £ (2}, a)e.
i) T(a) =T (a) + T (ae.
iii) The trace form is symetric and associative, i.e.
T (ab) =T (ba), T (a (be)) =T ((ab)) o).
iv) T(a) =T (a), N(a) = N (a).
v) f(ap, a) =T (ajdy)
vi) N(a) =0 < aecl. If acR/I a-1 = N (a)~! a.
iv) Since addition is commutative and K is an involutory
T(a) =ata—=a+ta=a-ta=T (3
N (2) =ai = da = 3 =N ()
v) N(a) = ai = (a; - as) (8, - &sc) = a,d, + (agdz - azd;)e
= N{(a;) + f(a;, ap)e
= f(ap, ap) = a;d; + axi; =T (a,8) (=T (a2dy))
(1), (i), (iii) and (vi) are proved in [4].

Using together the properties T (ab) =T (ba) and T (a) = T(4)
we obtain f (a;, a)) =T (a;d,;) T = (asa;) =T (d,a5) =T (aay).

%9

Now we can state the characterizatiom of “="" over the R as

follows:

Theorem 2. ({4]) Let R be non-associative, a = a; 4 aze, b = b,
—]— })28 €R. »

(i) If ajeZ, then a=b<>a; =b, and a, =bh,
(i) If a;¢Z, then a =bh < N(a) =N (b) and T (a) = T(b)

?

Lemma 3. “="" is an equivalence relation over R.

Proof: Let a, b, ceR, a =a; + aje, b =Db; + bz, ¢ =¢; + ez

Because of the :definition. “a = a’’ and “a=Db « b = a” is obvious.
Let a= b and b = ¢. Then there are two:case: - -
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i) If a€Z, then a; =b;eZ, by =c¢; ie.a; =¢; and a) = by,
b, = ¢; ie. a; = a; (Lemma 1). Therefore a = c.

i) If a;¢Z then we have N (a) =N (b), T(a) =T (b), N(b) =N
(¢), T(b) =T (c). Therefore N (a) =N (c), T(a) = T (c¢). Hence
a = c.

In [4], it is shown that for all a, b, ¢ € R ab = ba and a (be) =
(ab)ec.

An equivalence class of x € R is denoted by [x]. Ifxe A, [x]4
is denoted its conjugacy class in A. It can be shown that, by direct
computation, [x], = [x] nA.

4. CROSS-RATIO OVER PROJECTIVE LINE

Let o ¢ A. The projective line which is coordinatized by A is
denoted by P(A). Therefore P(A) = Ay {0} . Generalizing this over R,
P(R) = RUI-t is obtained, where I-t: = {(ac)~1]ac € I} conmsist of
formal inverses of the non—units of R. On P(R), neighbour relation

@ %9

0’ is defined by;
‘ x[yr< (x,y €I71) or (x,y € R, x-yel).

Using the fact that I is an ideal, it can be shown that neighbouring is
an equivalance relation.

By putting (0c)~t =0~t = o0, P(A) = P(R) is obtained. The
mapping V:P(R) — P(A), W(x; -+ x32) =x3, ¥( (ag)~1) = o0 is sur-
jective and leaves “o” imvariant. Also xoy < 1(x) = ¥(y). So P(R)/
O ~ P(A) via the canonic epimorphism Y.

The operations with the clements of 11 is as follows (cf. [4]):
Let (ac)~teI-t, ceR and qe R/I. Then,
(ae)~1 + ¢z = (ag)™t =: ¢ + (ae)™!
q(ac)™t: = (aqe)™! (=a(q %) 7Y); 4 =dq; + gz
(ac)7iq: = (q"ae)™1 (= (q, 1ac)™?)

(ae)=1=) = as
Other terms are not defined.

With the help of these rules, some special permutations (which
are given in [9] over A) can be given over R:
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(I): tyex —> x4+ o ; xeR
(2): Iy x —> qx ; qeR /1
(3): Tqix > xq 3 qeR/I
4): it x —— x7!

Let G be a group generated by all these permutations, i.e. G =
<ty fq-Tgp 1> a € R, g e R/ 1. Since rq =ifq_; i, G is generated by
all tO(? fq, i.

Lemma 4. For the group G = G(R), following statements are
satisfied:

i) G preserves neighbourhood.

ii} G acts transitively on triples of pairwise nonneighbourint points

of P(R).
Proof: i) is easy to show that t,, 1, and i preserves neighbourhood.

i) It is sufficient to see that there is a o € G such that o(x) — 0,
o(y) =1 and o(z) = o0, for all pairwise non—neighbouring x, y, z € P(R).
If 6 is defined as follows then proof will be complated.

; if z = oo:bz(()e)“l
A s if z=0

it ; ifzz£tw, 240

T 1 t
. (y—%) —.é(
= 1'(Y_l—x_l) —x"
(o) !
Definition. Let a, b, ¢, d ¢ P(R) be ppirwise non-neighbourong.
The cross—ratio (a, b; ¢, d) of the elements a, b, ¢, d is defined as a con-
jugacy class via:
(a, b; ¢, d) = [((a—d)~1 (b-d)) ((b~¢)~1 (a—e¢))]; if a, b, ¢, deR
(571, bs e, d) = [((1 + ds) (b=d)) (b—c)~ 1 (1-cs)) |; if s~tel71, b, ¢,deR
(a, s71; ¢, d) = [((a—d)~t (1~ds)) ((1 -+ es) (a—c)) ]; if s71el~1, a, ¢, deR
(a, b; s71, d) = [((a—d)~* (b-d) ((1 + sb) (1-sa))]; if s—1el71,a,b, deR
(a, b; ¢, s71) = [((1 + sa) (1-sb)) ((b—c)~! (a—c)) ]; if s71€l7!, a, b, ceR
The theorem which is given in [9] as Theorem 2 over alternative
division ring A can be generalized over R i.e. every cross—ratio consist
onlt of elements of (RN ({0, 1} + Ae). Conversely, the conjugacy class
of any such element appears as a crossratio: Given three pairwise non—
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neighbouring points a, b, ¢ an element reR/ ({0, 1} - Ac), then there
is a point d @a, b, ¢ with [r] = (a, b; ¢, d) and if reZ(c) then d is unique

(cf. [4]).

A permutation ® of P(R) preserves cross ratios, if it preserves
neighourhood, and if

(a, b; ¢, d) = (O(a), D(b); D(c), B(d))

holds for all pairwise non-neigbouring a, b, ¢, d € P(R). The grouP
of all such @ is denoted by S(R) = S. : : -

Now, we can state a theorem which is expressed cross—ratio in
terms of addition, subtraction and inversion:

Theorem 3. Let a,b,¢c,d e R non—neighbourihg Vpéirﬁfise Iijél)intsv.
Then '

(3 bs e, d) = [((a=b)"! ~(a-d)"1) ((@-b)~1~(a-c) 1)1 ]

Proof: By Lemma 1, the multiplicative of N, and associativity
of T u' = ((a-d)~! (b-d)) ((b—¢)~1 (a—c)) is conjugate to u = (((a-d)~!
(b-d)) (b—c)~! (a-c). = ‘

w = (((a-d)1(b-d)) (b)) (a-0) = (a(a-c)=1) (b-c) = (a-d)!
{b-d). Thus,

(a-)~1(h-)) (a-b)~* = ((u (a=e)™") (b~¢)) (a-b)~" *)
First we compute the left hand side:
((a=d)~1(b-d)) (a-b)~1 = ((a-d)~*((a-d)~(a-b}))) (a-b)~
= ((a-d)~Y(a-d)~(a-d)~}(a-b)) (a-b)~1
= (I~(a~d)~(a-b)) (a-b)~1
= (a-b)1~(a-d)~1((a-D) (a-b)~1)
= (a-b)~1~(a-d)~1,
Putting this result in (*):
(a-b)~1~(a-d)=1 = ((u(a-c)=1) (b-c)) (a-b)~
= ((((a-b)~1~(a-d)~") ((a-b)) (b-c)~1) (a-¢) =u
= [(((a-b)~'~(a~d)=1) (a-b)) (b-c)~1) (a-c) | = [u]

= [((a-b)~1~(a-d)~t ((a-b)) ((b—c)~}(a—c))) ] = [u]
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= [{(a-b)~—(a-d)~1) (((a-0)((a-0)~(a-b)) (a-b)=) 1] = [u]
= [(a-b)~1~(a-d)"1) ((a-b)~~{(a-¢)~1(a-b)) (a-b)=1)-1] = [u]
= [(a-b)"~(a-d)) ((a-b)~(a-0)=1) | = [u] = [w'].

In fact, this proof is given in [9] by using to the idea; “Moufang
identities remain valid when one x is replaced by its inverce.”. But
it is not true (cf. [6], [7]). For this, we gave a formal proof above.

Lemma 5. For all a, b, ¢, d € P(R) pairwise non—neighbour ing
elements (a, b; ¢, d) = (b, a; d, ¢).

Proof: There are threee cases:
(i) If a,b,¢,deR;
(8, bs ¢, d) = [((a-d) 1(b-d)) ((b-0)~ (a—c))
— [((b-0)(a—0)) ((a-d)~1(b-d))
[b, a; d, c]
(ii) If ssiel-1, b, e, deR;
(51, bs e d) = [(1 -+ ds) (b-d)) ((b—c)~1(1-cs)) ]
= [((b-0)~(1-cs)) (1 + ds) (b-d)
= [b,s™1; d, ¢]
(iii) If s—1e I-1, a, b, ceR it is shown by similar way.
Theorem 4. G is a subgroup of S.

To prove this it is sufficient to see all ty, 1q, i €S i.e. to seet, rq
and i preserves cross-ratoio. If a, b, ¢, deR/1I, t is proved in [9].
By Lemma 5 it must be seen only to the cases acl~! and del~!. These
are may be seen by easy computation and some of these computations
ara given in [4].

Lemma 6. Let a, b, ¢, deP(R) be pairwise non-neighbouring
and [x]~!is defined to be [x~1] and 1-[x] = [1-x] then
(a bsc,d)"r = (b, a; ¢, d)
1-(a b;c d) =(a, ¢; b, d)
(a,b;c,d) = (b, a;d, ¢) =(c,d; a,b) =(d, ¢; b, a)

Proof: By lemma 4—ii and Theorem 4 we can chose a =0, b =o,
¢ = 1. Then this lemma is proved by easy computation.
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Corollary. ([4]) Let (a, b, ¢, d) and (x, y, z, t) are pairwise non-
neighbouring quadruples of P(R). Then :

(a, by c, d) =(x, y; 2, t) < qyeC 5 y(a) =x, y(b) =y, y(c) =1z,
v(d) =t.

5. PERMUTATION GROUPS ON A LINE IN MK-PLANES.

Let M be a MK-plane which is coordinatized with respect to (O
E, U, V), R the corresponding local alternative ring, 1 the ideal of its
non—units. Consider a line

g =0V =[1,0,0] = {(0,y, )| yeR} U {(0, 1, z) | zel}
Let P(R) =PUI-1, It = {z-1|zel{. P(R) is identified with g as
follows: : :
y <—> (0, vy, 1), 27t «—— (0, 1, ).
Definition. Let h, ke 2, CeP, C[] h, k. Then well-defined bijection
6: =¢ (h,C, k): h — k 3 ¢(X) = XCnk

mapping h to k is called a perspectivity from h to k with centre C. A
finite product of perspectivities is called a projectivity. The set of all
projectivities mapping an any line g onto itself is a group which is de-
noted by K or H(g).

The following lemma is given in [5] like as [1]:

Lemma 7. The group 9 preserves the neighbour relation and
transitively on the triples of pairwise non—geighbouring point of P(R).
Morever, ¥ is generated by the products of three prespectivities.

Definition 5. (cf. [5]) For every MK-planes G < .

6. ALGEBRAIC DESCRIPTION OF THE PROJECTIVITIES

In this section we are going to summarise some definitions and
theorems which are given in [5].

Lemma 8. If M is lineary cohesive then every perspectivity is
induced by an elation, and every projectivity is induced by a projec-
tive collineation. k

. . Now we shall consider coordinatization of M with respect to arbit-
rary bases (O’, E’, U’, V’). Without lost of generality, we may always
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take the set R as the set of coordinates, and subset I as the coordinates
of points neighbouring O’. Of course, R is again a local alternative ring,
I the set of its non—units. If M is coordinatized with respect to the basis
(0, E, U, V) where 1 =0VAUE == OV NUE’, then for the points
yeg = P(R) with yeR, we can always assume that the condition

0,y,1) =y =(0,y,1)
holds.

Lemma 9. Let R” = (R, @, o) be the coordinate alternative ring
of M with respect to the basis (O, E’, U, V) where gn UE" =1 = gn UE.
Then there is a qeR /I, such. that a@®b =a -+ b, aob = (aq) (q— 1b)
hold for all a, b e R.

By using the aboves the following theorem can be proved:

Theorem 6. Let M.be a cohesive MK-plane such that the ca-
nonic image M* is different from the smallest projective plane. Then

=6

OZET

Bu g¢alismada [3], [4] ve [9] da verilen ¢ifte oran tamimlar: 151-
gmda konunun genis bir incelemesi yapilmis ve [9 ] daki baz1 sonuglarn
hatah bhir cebirsel ifadeye dayali olan ispatlari yerine formal ispatlar
verilmistir. Ayrica hesaplamalarda ¢ok kullamsl olan baz1 temel sonug-
lar ¢ikarlmistir.
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