Commun. Fac. Sci. Univ. Ank. Series A1 V. 45. pp. 61-66 (1996)

ON A LAGUERRE INVERSION

EMINE SOYTÜRK* and RÜSTEM KAYA**

* Department of Mathematics, University of Ankara, Ankara-TURKEY

** Department of Mathematics, University of Osmangazi, Eskişehir-TURKEY

(Received Nov. 16, 1995; Revised April 15, 1996; Accepted July 30, 1996)

ABSTRACT

The existence of some automorphisms on certain Laguerre plane L is used to determine the algebraic structure of the projective plane, which is a completion of the affine plane L_A derived at a known point A. In this paper, firstly a special Laguerre automorphism, that is a Laguerre inversion, is defined; and then the set of fixed points and the set of fixed circles of the Laguerre inversion are investigated.

1. INTRODUCTION

A Laguerre plane is a system $(\mathcal{P},\mathcal{Q},\in)$ which consists of a nonempty set \mathcal{P} of points, a nonempty set \mathcal{Q} of subsets (circles) of \mathcal{P} and \in the set theoretical inclusion satisfying the following axioms [2], [4]:

L.1. For every three pairwise nonparallel points A,B,C, there is a unique circle containing them. This circle is denoted by (ABC).

(Two points $A,B \in \mathcal{P}$ are said to be parallel if and only if A=B or there is no such a circle ς that $A,B \in \varsigma$. This relation is an equivalance relation on the point set \mathcal{P} . Its equivalance classes are called generators. If A and B are parallel points, then we write A//B.)

- L.2. For every point there exists a unique generator, containing this point.
- L.3. Every circle intersects every generator, containing this point.
- L.3. Every circle intersects every generator in exactly one point.
- L.4. For each circle ς , each point A on ς , and each point B#A in L\ ς , there is a unique circle ς' containing A and B such that $\varsigma \cap \varsigma' = \{A\} \varsigma$ and ς' are called tangent.

L.5. Every circle ς contains at least three points and $L \downarrow \varsigma \neq \emptyset$.

The origin of the Laguerre geometry is the geometry of oriented lines and oriented circles with nonnegative radius of the Euclidean plane [2]. In [1], Benz constructed the following class of Laguerre planes. Let F be an arbitrary field and $V=F^3$ denote the three dimension vector space over F.

Let O be an oval in the plane $\{(x,y,z) \in V: z=0\}$, i.e., is a subset of a projective plane such that i) each line cuts O in at most two points, and ii) through each point $\mathcal{P} \in O$ there exists exactly one tangent, i.e. a line intersecting O in exactly one point. Then $(\mathcal{P},\mathcal{Q},\in)$ with $\mathcal{P} = \{(x,y,z)\in V:$ $(x,y,0)\in O\}$ and $\mathcal{Q} = \{(x,y,z)\in \mathcal{P}: z = ax+by+c, a,b,c\in F\}$ is a Laguerre plane in the above sense. Here \mathcal{P} is the set of points of an ovoidal cylinder and a circle is intersection of \mathcal{P} with a plane which is not parallel to the axis of the cylinder (For a general definition, see [4]). In [2], Benz shows that if O is given by $x^2+y^2 = 1$ then the corresponding Laguerre plane is isomorphic to the parabolic model $(\mathcal{P},\mathcal{Q},\in)$ over \mathcal{R} where $\mathcal{P} = \mathcal{R}^2 \cup \mathcal{R}$;

$$\boldsymbol{\mathcal{C}} = \left\{ \left\{ (\mathbf{x}, \mathbf{y}) \in \boldsymbol{\mathcal{R}}^2 : \mathbf{y} = \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c} \right\} \cup \{\mathbf{a}\} : \mathbf{a}, \mathbf{b}, \mathbf{c}, \in \boldsymbol{\mathcal{R}} \right\}$$

and \mathcal{R} is the set of real numbers. In order to obtain some new Laguerre planes, Hartman replaced the parabolas in the above model by some particularly chosen curves [3].

The following theorem explains the main property of the Laguerre planes.

Theorem 1. Let X be the generator on the point X. Then the geometrical structure,

$$L_{A} = (\mathcal{P} \setminus A, \{ c \setminus \{A\}: A \in c, c \in \mathcal{C} \} \cup \{ X: X \in \mathcal{P}, X \# A\}, \epsilon \}$$

is an affine plane.

This affine plane is called the affine plane derived by the point A of the Laguerre plane, [2].

2. HYPERBOLIC AND PARABOLIC PENCILS

The set of all circles containing nonparallel points A and B is called a hyperbolic pencil and denoted by

$$[A,B] = \{ \varsigma: A,B \in \varsigma, \varsigma \in \mathcal{C} \}$$

The set of all circles, which are tangent to the circle c at the given point A is called a parabolic pencil and denoted by [A,c],

$$[A,c] = \{c': c' \in \mathcal{C}, c' \cap c = \{A\}\} \cup \{c\},\$$

[5].

Definition 1. Let $L = (\mathcal{P}, \mathcal{C}, \in)$ and $L' = (\mathcal{P}, \mathcal{C}', \in')$ be two Laguerre planes. If there exists a one to one and onto function f, which maps points and circles of L to points and circles of L'; respectively, and if, $A \in \varsigma \Rightarrow f(A) \in f(\varsigma)$ for $\forall A \in \mathcal{P}$ and $\forall \varsigma \in \mathcal{C}$, then these Laguerre planes are said to be isomorphic and such a function f is said to be isomorphism.

If L = L' then the function f is called an automorphism of the plane L, [5]. The automorphism f maps parallel points to parallel points. Therefore an automorphism preserves the generators invariant in whole. Every automorphism f maps a hyperbolic pencil to a hyperbolic pencil and a parabolic pencil to a parabolic pencil, that is,

$$f([A,B]) = [f(A),f(B)] f([A,c]) = [f(A),f(c)].$$

Restriction of an automorphism f to the affine plane is an automorphism f_{L_A} of L_A . Consider the affine plane L_A as an embedding into Laguerre plane L. If the restriction f_{L_A} acts on the points of the affine plane, then all points, which are parallel to A, are invariant under the mapping f.

Definition 2. An automorphism $f \neq I$ of a Laguerre plane is said to be Laguerre Inversion, if for all points $A \in \mathcal{P}$ with $A \neq f(A)$ it follows that A and f(A) are not parallel and all the circles passing through A and f(A) are invariant under f, where I denotes the identity automorphism.

Proposition 1. Every Laguerre inversion is an involution.

Proof. Let $A \neq f(A)$, then $A \neq f(A)$. Since the Laguerre inversion f maps every circle of the hyperbolic pencil [A,f(A)] into itself, the points A, f(A) of all circles of the hyperbolic pencil [A,f(A)] are invariant with respect to f. Then $A = f^2(A)$, that is f is an involution.

Proposition 2. Let A and B are two different points of a Laguerre plane L and f is a Laguerre inversion. Then the set $\{A, f(A), B, f(B)\}$ is either concircular or a subset of union of two generators.

Proof. Let A denote a point which is not fix under f. If some points B are not parallel to A and f(A), then there is a circle ς containing the points A,f(A) and B. Since $\varsigma \in [A,f(A)]$, $f(\varsigma) = \varsigma$ as according to the Definition 2. That is $f(B) \in \varsigma$ and $\{A,f(A),B,f(B)\}$ consists of the points of one circle. Now, let B//A. Then f(B)//f(A). If B//f(A), then $f(B)//f^2(A) = A$, and by the Proposition 1, the set $\{A,f(A),B,f(B)\}$ is the union of two different generators. Finally, if A and B are two invariant points of f, then obviously the set $\{A,B\}$ is a subset of the union of two generators.

Proposition 3. If a generator A is invariant under the Laguerre inversion f, then \overline{A} is pointwise invariant under f.

Proof. Let $\overline{A} = f(\overline{A})$. Then every point A of the generator A can be transformed to the point f(A), which is parallel to A. According to the Definition 2, f does not change any points of the generator \overline{A} . In the case of f(A) = A we have $\overline{f(A)} = \overline{A} = f(\overline{A})$. That is the generator \overline{A} is pointwise invariant under f.

Proposition 4. The set of fixed points of a Laguerre inversion is empty or consists of the points of one or two generators.

Proof. Assume that a Laguerre inversion f has the fixed point A. Then, according to Proposition 3, \overline{A} is pointwise invariant under f. If $B \notin \overline{A}$ is another fixed point of f, then the generators \overline{A} and \overline{B} ($\overline{B} \neq \overline{A}$) are pointwise invariant under f. If $R \notin \overline{A} \cup \overline{B}$ and f(R)=R, then the automorphism $f|_{L_R}$ preserves pointwise invariant two different lines of the affine plane L_R . Then $f|_{L_R} = I|_{L_R}$ and f = I. This is a contradiction to the condition of $f \neq I$.

Proposition 5. Let f be a Laguerre inversion. The set of all circles, that are invariant under a Laguerre inversion f and include a fixed point A, is a hyperbolic pencil when $f(A) \neq A$ and a parabolic pencil when f(A) = A.

Proof. Let $f(A) \neq A$. According to the Definition 2, the points A and f(A) are supports of the hyperbolic pencil [A,f(A)], which are preserved under f. Inversely, if the circle ς is invariant under f and contains the point A, then for $A \in \varsigma$ we have $f(A) \in f(\varsigma) = \varsigma$, then ς is an element of hyperbolic pencil [A,f(A)] and a fixed circle of f.

Now, let f(A) = A. In this case there will be two different situations.

ON A LAGUERRE INVERSION

a) The generator \overline{A} is unique generator which is pointwise invariant under f. If $B \notin \overline{A}$, then $B \neq f(B)$, that is, if B # f(B), then A, B and f(B)are not pairwise parallel points. Denote by ς the circle which contains the points A, B and f(B) and define the following set

$$\mathbf{K} := \{ \boldsymbol{\varsigma} \in \boldsymbol{\mathscr{C}} : \boldsymbol{\varsigma} = (\mathbf{ABf}(\mathbf{B})), \forall \mathbf{B} \notin \mathbf{A} \}.$$

K is the set of circles which are invariant under f and covers the set $\mathcal{P}\setminus\overline{A}$. All circles of the set K which $f(B) \neq B$ necessarily contains a point (B,f(B)). Suppose that there are two different circles v and w from K, which have another common point $D \neq A$, besides A. Since v and w are invariant under f and A is a fixed point of f, then D is also a fixed point of f. But this contradicts to D#A. Therefore K is a parabolic pencil of fix circles under f with basepoint A.

b) f has two nonparallel fixed points A and D. Let $B \notin A \cup D$. Then B # f(B) and the circle $\varsigma = (ABf(B))$ is invariant under f. Let $S := [A, \varsigma]$. Because of f(A) = A and $\varsigma = f(\varsigma)$ the set S is invariant in whole under f. Since each circle $w \in S$ contains the fixed point $\overline{D} \cap w$, then the set S is elementwise invariant. In this case, A carries a parabolic pencil of fixed circles of f. Now let w be a circle, which contains A and invariant under f. Suppose that $[A,\varsigma]$ is a parabolic pencil of fixed circles with carrier point A. We have proved above the existence of such a pencil.

Suppose that $w \notin [A,c]$ and that $A \in w$, then $|w \cap v| = 2$ for every $v \in [A,c]$ and $f(w \cap v) = w \cap v$. Therefore, both of elements of $w \cap v$ are also fixed points under f. Since this one is valid for every $v \in [A,c]$, then w is pointwise invariant under f. According to the Proposition 3 and 4 a Laguerre inversion can not possess three pairwise nonparallel fixed points. Therefore $w \in [A,c]$ and the Proposition 5 is proved.

REFERENCES

- [1] BENZ, W., Pseudo-Ovale und Laguerre Ebenen. Abh. Math. Sem. Univ. Hamburg 27 (1964), 80-84.
- [2] BENZ, W., MÄURER, H., Über die Grundlagen der Laguerre-Geometrie. Jahresberg. Deutsch Math. Verein 67 (1964), 14-42.
- [3] HARTMAN, E., Eine Klasse nicht einbettbarer reeller Laguerre-Ebenen. Journal of Geometry Vol. 13/1 (1979), 49-67.

- [4] KAYA, R., A Class of Ovoidal Laguerre Planes, Communications de la Faculté des Sciences de l'université d'Ankara. Série A1 Mathématiques, Tome 28 (1979), 1-5.
- [5] KLEINEWILLINGHÖFER, R., Eine Klassifikation der Laguerre-Ebenen nach L-Streckungen und L-Translationen, Arch. Math. Vol. 34 (1980), 469-480.