Commun. Fac. Sci. Univ. Ank. Series A1 V. 45. pp. 45-50 (1996)

ON HELICES OF A LORENTZIAN MANIFOLD

N. EKMEKÇİ and H.H. HACISALİHOĞLU

Department of Mathematics, Ankara University, Ankara, TURKEY

(Received Sep. 29, 1995; Revised March 7, 1996; Accepted March 19, 1996)

ABSTRACT

T. Ikawa obtained in [1] the following differential equation

$$D_x D_x D_x X - K D_x X = 0$$
, $K = k_1^2 - k_2^2$

for the circular helix which corresponds to the case that the curvatures k_1 and k_2 of a time-like curve α on the Lorentzian manifold M_1 are constants.

In this paper, T. Ikawa's result is generalized to the case of general helix, i.e. k_1 and k_2 are non-constant functions of t, but $\frac{k_1}{k_2}$ is constant.

1. PRELIMINARIES

 \mathbb{R}^n with the metric tensor

$$\langle \mathbf{V}_{\mathbf{p}}, \mathbf{W}_{\mathbf{p}} \rangle = -\sum_{j=1}^{1} \mathbf{V}_{j} \mathbf{W}_{j} + \sum_{k=i+1}^{n} \mathbf{V}_{k} \mathbf{W}_{k}$$
, $\mathbf{V}_{\mathbf{p}}, \mathbf{W}_{\mathbf{p}} \in \mathbb{R}^{n}$

is called semi-Euclidean space and is denoted by \mathbb{R}_i^n where i is called the index of the metric [2].

Let M be an n-dimensional smooth manifold equipped with a metric \langle , \rangle which is a symmetric non-degenerate (0,2)-tensor field on M with constant index.

A tangent space $T_p(M)$ at the point $p \in M$ is furnished with the canonical inner product. If the index of the metric \langle , \rangle is i, then we call M and indefinite-Riemannian manifold of index i and denote it by M_i . If \langle , \rangle is positive definite, then M is a Riemannian manifold. Especially if i=1, then M is called a Lorentzian manifold. A tangent vector X of M_i is said to be space like if $\langle X, X \rangle > 0$, time-like if $\langle X, X \rangle < 0$ and null if $\langle X, X \rangle = 0$ and $X \neq 0$.

Let $X_1,...,X_i,X_{i+1},...,X_n$ be tanget vectors of M_i , n=dim M. Assume that they satisfy $\langle X_A,X_B \rangle = \varepsilon_A \delta_{AB}$ where $\varepsilon_A = \langle X_A,X_A \rangle = +1$ (resp. -1) for A = 1, 2, ..., n. If each X_A is space-like (resp. time-like) then $\{X_1,...,X_n\}$ is called an orthonormal basis of M_i [2].

2. CURVES

A curve in an indefinite-Riemannian manifold M_i is a smooth mapping

$$\alpha: I \rightarrow M_i$$

where I is an open interval in the real line \mathbb{R} . The interval I has a coordinate system consisting of the identity map u of I. The velocity vector of α at $t \in I$ is

$$\alpha'(t) = \frac{d\alpha(u)}{du}$$

A curve α is said to be regular if $\alpha'(t)$ does not vanish for all t in I.

A curve α in an indefinite-Riemannian manifold M_i is said to be space-like if its velocity vectors α' are space-like for all $t \in I$; similarly for time-like and null. If α is a space-like or time-like curve, we can reparametrize it such that $\langle \alpha'(t), \alpha'(t) \rangle = \varepsilon$ (where $\varepsilon = +1$ if α is space-like and $\varepsilon = -1$ if α is time-like respectively). In this case α is said to be unit speed or it has arc length parametrization. Here and in the sequal, we assume that the space-like or time-like curve α has an arc length parametrization.

We define here a circle and circular helix in an indefinite-Riemannian manifold M_i (cf[3], [4]). Let α be a time-like curve in M_i . By k_j , we denote the j-th curvature of α . If k_j vanishes for j > 2 an the principal vector field Y and binormal vector field Z are space-like, then we have the following Frenet formulas along α

$$\begin{array}{l} \alpha'(t) =: X \\ D_x X = k_1 Y \\ D_x Y = k_1 X + k_2 Z \\ D_x Z = -k_2 Y \end{array}$$
(2.1)

where D denotes the covariant differentiation in M_i . A curve α is called a circle if $k_2 \equiv 0$ and $k_1 = \text{constant} > 0$, for all $t \in I$.

If both k_1 and k_2 are positive constants along α , then α is called a circular helix [1].

Definition 2.1: A general helix is a regular curve α such that for some fixed unit vector U, $\langle T,U \rangle$ is constant. U is called the axis of a helix [5].

Corollary: (Lancert, 1802). A unit speed curve α with $k_2 \neq 0$ is a general helix if and only if there is a constant c such that $k_1(t) = ck_2(t)$ for all $t \in I$ [5].

3. CIRCLES

Let α be a regular time-like curve in a Lorentzian manifold M₁. In this section, we assume that α is a circle, that is, α satisfies

$$\begin{array}{l} \alpha'(t) = X \\ D_{x}X = k_{1}(t)Y \\ D_{x}Y = k_{1}(t)X \end{array}$$
 (3.1)

for any $t \in I$, where Y is a space-like vector field and k_1 a positive constant function of the parameter t.

Lemma 3.1: Let α be a time-like curve in a Lorentzian manifold M_1 . If α is a circle, then the velocity vector field X or α satisfies

$$D_{X}D_{X}X - \langle D_{X}X, D_{X}X \rangle X = 0$$
 (3.2)

conversely, if the velocity vector field of a time-like curve α satisfies (3.2), then α is either a geodesic or a circle [1].

4. HELICES

Next we consider general helices in a Lorentzian manifold M_1 . Then we have

$$\begin{array}{l} \alpha'(t) = X \\ D_x X = k_1 Y \\ D_x Y = k_1 X + k_2 Z \\ D_x Z = -k_2 Y \end{array}$$

$$(4.1)$$

for any $t \in I$, where Y, Z are space-like vector fields and k_1, k_2 are the functions of the parameter t.

Theorem 4.1: A unit speed curve α on M_1 is a general helix if and only if

$$D_x D_x D_x X - \overline{K} D_x X = 3k_1'(t) D_x Y$$
(4.2)

where

$$\overline{K} = \frac{k_1''(t)}{k_1'(t)} + k_1^2(t) - k_2^2(t)$$
(4.3)

Proof: Suppose that α is a general helix. Then, from (4.1), we have,

$$D_{x}D_{x}X = D_{x}(k_{1}Y)$$

= $k_{1}'Y + k_{1}D_{x}Y$
= $k_{1}^{2}X + k_{1}'Y + k_{1}k_{2}Z$ (4.4)

and

$$D_{x}D_{x}D_{x}X = 3k_{1}'k_{1}X + (k_{1}'' - k_{1}k_{2}^{2})Y + (k_{1}'k_{2} + (k_{1}k_{2})')Z + k_{1}^{2}D_{x}X$$
(4.5)

Now, since α is a general helix, we have

$$\frac{\mathbf{k}_1}{\mathbf{k}_2} = \text{constant}$$

and this upon the derivation gives rise to

$$k_1'k_2 = k_1k_2'$$
.

If we substitute the values

$$Y = \frac{1}{k_1(t)} D_X X$$
(4.6)

and

$$(k_1(t) k_2(t))' = 2k_1'(t) k_2(t)$$
,

in (4.5) we obtain

$$D_{x}D_{x}D_{x}X = \left(\frac{k_{1}''(t)}{k_{1}(t)} + k_{1}^{2}(t) - k_{2}^{2}(t)\right)D_{x}X + 3k_{1}'(t) (k_{1}(t)X + k_{2}(t)Z)$$
$$= \left(\frac{k_{1}''(t)}{k_{1}(t)} + k_{1}^{2}(t) - k_{2}^{2}(t)\right)D_{x}X + 3k_{1}'(t)D_{x}Y.$$

48

Hence we have (4.2).

Conversely let us assume that (4.2) holds. We show that the curve α is a general helix. Differentiating covariantly (4.6) we obtain

$$D_{x}Y = -\frac{k_{1}'(t)}{k_{1}^{2}(t)} D_{x}X + \frac{1}{k_{1}(t)} D_{x}D_{x}X$$

and so,

$$D_{x}D_{x}Y = \left(-\frac{k_{1}'(t)}{k_{1}^{2}(t)}\right)'D_{x}X - \frac{k_{1}'(t)}{k_{1}^{2}(t)}D_{x}D_{x}X$$
$$-\frac{k_{1}'(t)}{k_{1}^{2}(t)}D_{x}D_{x}X + \frac{1}{k_{1}(t)}D_{x}D_{x}D_{x}X \qquad (4.7)$$

if we use (4.2) in (4.7), we get

$$\begin{split} D_{x}D_{x}Y &= \left(\left(-\frac{k_{1}'(t)}{k_{1}^{2}(t)} \right)' + \frac{\overline{K}}{k_{1}(t)} \right) D_{x}X \\ &- \frac{2k_{1}'(t)}{k_{1}^{2}(t)} D_{x}D_{x}X + \frac{3k_{1}'(t)}{k_{1}(t)} D_{x}Y \; . \end{split}$$

Substituting (4.4) and (4.1) in this last equality we obtain

$$D_{x}D_{x}Y = \left\{ \left(-\frac{k_{1}'(t)}{k_{1}^{2}(t)} \right)' + \frac{\overline{K}}{k_{1}(t)} \right)^{T} D_{x}X \\ -\frac{2k_{1}'^{2}(t)}{k_{1}^{2}(t)}Y + k_{1}'(t)X + \frac{k_{1}'(t)k_{2}(t)}{k_{1}(t)}Z$$
(4.8)

On the other hand substituting the equality

$$D_{x}D_{x}Y = k_{1}'(t)X - k_{2}^{2}(t)Y + k_{2}'(t)Z + k_{1}(t)D_{x}X$$

in (4.8) we obtain

$$k_{2}'(t) = \frac{k_{1}'(t)k_{2}(t)}{k_{1}(t)}$$

 $\frac{k_2'(t)}{k_2(t)} = \frac{k_1'(t)}{k_1(t)} .$

Integrating this we get

$$\frac{k_1(t)}{k_2(t)} = \text{ constant.}$$

Thus α is a general helix. Hence the proof is done.

We note that in the special case when α is a circular helix, our theorem coincides with the result of T. Ikawa [1].

REFERENCES

- IKAWA, T., On Curves and Submanifolds in an Indefinite-Riemannian Manifold, Tsukuba J. Math. 9 (1985), 353-371.
- [2] O'NEIL, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
- [3] BONNER, W.B., Null Curves in a Minkowski Space-Time Tensor N.S., 20 (1969), 229-242.
- [4] NOMIZU, K., YANO, K., On Circles and Spheres in Riemannian Geometry, Math. Ann., 210 (1974), 163-170.
- [5] MILLMAN, R.S., PARKER, G.D., Elements of Differential Geometry, Prentice Hall, Englewood Cliffs, New Jersey, 1987.