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ABSTRACT

Defining the sequence spaces C,(F), C(F), m(F), lp(F ); (p == 1) and ¥ (F) over a field
F with non-trivial non-archimedian valuation, inclusion theorems have been established for
an infinite matrix defined over a field F to transform (i) lp (F) into y (), (ii) V into y (F) where
V is either Cy (F) or C (F) or m (F), and (iii) y (F) into m (F).

1. INTRODUCTION

Inclusion theorems on matrix transformations of sequence spaces
deal with finding necessary and sufficient conditions for aa infinite
matrix to transform one sequence space into the same or another se-
quence space. In all such theorems we usually rostrict ourselves to the
sequences and series composed of real or complex entries. In this paper,
replacing the field of scalars into a field with non—irivial, non—arc-
himedian valiation, we shall cstablish some inclusion theorems of
matrix transformations of some sequence spaces which are not studied
by authors like Somasundaram. [4, 5. 6]

§ 2 deals with pre-requisites containing the definitions of the
relevant sequences paces, some of their properties, proofs of some the-
orems and a known result quoted as Lemma, which will be used in
§ 3 to prove our main results. ‘

2. PRE-REQUISITES

Let F be a non-trivial, non—-archimedian field which is complete
under the metric of valuation. If x = (xx) = (X1, X2,- - - Xk,...)» Xg € F

is a sequence defined over I, this assumption ensures not only the
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completion of the sequence spaces we consider but also the absolute
convergence of a series in I' implies convergence in F. In what follows

o
Zxx demote ¥ xi and the notion of convergence and boundedness
k=1

will be in relation to the metric of valuation of the field.

Let us List the relevant sequence spaces as follows:

Co(F) : The set of all null sequences x = (x)

C(F) : The set of all convergence sequences x = (xi)

m(F) : The set of all bounded sequences x = (xg)

In(F) : {x =(xx): £|x|P is convergent, p > 1}

2F) 0 {x = (x): (k! x| )17k 50 as k — w }

Remark: y(F) can be regarded as the collection of all entire func-
tions f(z) = Txy z¥ of exponential order 1 and type 0 (Sirajudeen[2]).

Co(F), C(F) and m(F) are non-archimedian Banach spaces with
non-archimedian norm, |x | = supg|xx|. If x = (xx) is an element
of y (F) then [x| =sup {(k!|xy [17%, k > 1} satisfies the following
conditions.

i) |x] >0, | x| =0 if and only if x = (0, 0...) where 0 is the
zero element of the field F.

i) x-Fyl<Max {|x], [y]|}.

i) fex] = A(t) [x), ek, A®t) =max {1, 1]}

Hence y(I') is a metric space defined over F with a metric d (%, v)
== | Xy L

If X is a complete metric space over F, then a continuous linear
functional is a continuous linear operator on X with values belonging

to the ficld F. Then as in the archimedian case, we can establish the
following theorems.

Theorem 1. y(F) is a complete linear metric space over the non—
archimedian field F.

Theerem 2. Every continuous lincar functional f(x) defined for

1
x € 7 (F) is of the form f(x) = X cyxp, x = (xn) where ( a [ Cal )1/n
is a bhounded sequeance.
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Now let us quote a known result as the following Lemma.
Lemma: [Theorem 3 in Somasundaram |

Let Ty(x) be a sequence of continuous linear functionals defined
on a complete linear metric space E over F. Let lim | Tn(x) | << o for
each x € E. Then there exists a fixed number M and a closed sphere
S < E such that |Ty(x)| <M for all x €S and for all n > 1.

x| =( |xx[P)! P is evidently a non-archimedian norm in
the sense that, it satisfies the stronger form of triangular inequality
[x 4+ y | <Max {|x |, |y [}~ With this as norm as in the archi-
median case, we can establish the following theorem.

Theorem 3:

i) 1p(F), p > 1 is a non-archimedian Banach space.

ii) f p>1, so that p~! 4+ g1 =1 and 3 ax xi converges for
every x = (xxg) € Ip(F), then X [ax|? is convergent.
3. MAIN RESULTS

Let (X, Y) denote the set of all matrices A = (ank)om, k =1, 2,
that transform a sequence x = (xx) € X into a sequence A(x) =
(An(X)) =y = (yn) € Y defined by

Y, =2 ape xgpn = 1,2,3,...., and anx € F.

Theorem 4:
When p > 1 and p~1 + q~! =1, A e (1p(F), x(F)) if and only
if sup (n!{ap|®)l/M-»0asn—> o (1)
1<k<e

Proof: Sufficiency:

Let (xx) € 1p(F) and (1) holds so that X |xx|P converges, con-
verging to L (say). Then

(atlyn ) = (n!] Sanc x| )10n
< (n! Z | agg [9)1/79 (n! 2 | xx [P)1/0P
(by Holder’s inequality)

< sup (n!|apg|¥)1/ma (n! L)1/2p
1<k<ew
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< sup (n!]ayg @)I/m(@! Lytn,

1<k<eo
Hence wusing (1), we get (4! |yy|)1/® >0 as n — oo so that
(y2) €7 (). |
Necessity: Let A e (Ip (IN), % (). If condition (1) does not hold,
then for some ¢ > 0, there exists subsequences of n, such that

sup  (n!!apg 9D ~ ¢ for sufficiently large n. (2)
1<k <

Since yy, = Xapy xi is defined for all (xx) € 1,(F), from
Theorem 3 (ii), X | ap |9 is convergent, so that we have | an|¢ = 0
as k - o for every fixed n.

Hence we have (n!| ay; [9)1/2 = 0 as k — oo for every fixed n. (3)

Since (0, 0,... 1, 0. -)» 1, the identity element of the field F in
the k'™ place, is a sequence belonging to 1,(F),

(yn) = (anx) €y (F) gives

(n!lan|W1/" > 0 as n - oo for every fixed k, so that
(0! lang [/ < ———i—— for n > ny for every fixed k. (4)

Now we shall construct a sequence (xx) € 1y(F) and prove that
the corresponding (yy,) ¢ y (1*) using (2), (3) and (4). Then that will
suffice to prove the necessity of the condition (1).

By (2), first choose n; for n such that

sup (ng!fany [N > ¢ (5)
1<k <e 1
Having fixed an n,, by (3) we can choose a k, for k suech that
1
1/n
sup (m!lan |9 < (6)
kn 4+ 1<k<eo 1 2
1
Hence from (5) and (6) we get sup (ny!fapg @1/ >¢
1=k <n 1
1

Therefore there is a ki, 1 <k, <k, such that
1

1/n

(n!] anlk ] > < (7)
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Next by (2) and (1) choose ny > n; such that

- 1/ny
sap (ny!]aps k|9 > ¢ (8)
1<k<ew
and
1/112 o .
sup (np!] any x |9) >¢e/2 )
1<k ky

1

This is possible if ny, is large enough that n, > max (wy) when
1 << k <k, defined in (4).
1

Having chosen an n, by (3), there exists a kp, > ky; such
that

1 /112
sap  (no!]apy |9 < e/2 (10)
kn + 1<k < 2
2
1/n,
Now from (8) and (10) we get sup (0! ap  19) > ¢
1<k< kn 2
2

Therefore there existsa ko > ky in 1 <k <{ ky, that is in ky ;) <
. 2 1

k < ky, such thét

1{n, .
(ma!fan x |9 > ¢ (11)
22
Proceeding like this, by (2), (3) and (4) we can fiad nm > nm_; and
kpm >kp 1 in 1 <k <k, such that

m

L/om
sup (nm!| an x |9 < g/2 (12)
1<k< ky m
m-{
1/nm
sup (nm!| an x 9) < ¢/2 (13)
kn - 1wk e o it :
m
1/ﬂm
and (ny!]ap x |9 > ¢ : (14)

m m
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Now defining the sequence (xi) for all n as

xg = |apg (971 for k =k, k,,...
= 0 for k # k,, k,
so that (xy) € 1(F), then
Ky ©
Ingdyn | = [nd X appexe + ! B ag o xx
1 1 1 ky -1 1
gives i
b, @
fn! 2 ag x| = [n! yn~my! T apy xk]
1 ! kp 41 1
o0
< Max {ng! |yn |, [n)! 2 &gy x|}
1 kn 41 1
Now
kp,
ing! X ap x| = n!fapx [xx |
1 11 1
=mn! Ja; [0 (using 15)
11
™
< ¢ (using (7)
@ I
In,! 2 ap x| < sup (n!]apk|xx|)
knl__,_l 1 kn] + 1<k<lee 1
< sup (ny! [agk|{4) (using (15)

knl 4+ 1<k<<e 1
< (2] 2)"1 (using 6)
Using (17), (18) in (16) we have

M < Max n!] va s (=) 2)"

1/
Hence n,!|yn | > ¢"! so that (o!yn |) '™
1 1

> ¢

(15)

(16)

(18)
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Then
kn1 kl12 o
Yn = X ankXk+ X a8pkXk -+ X ang Xk
2 1 2 kp,+4-1 2 kp,4-1 2
gives
kll2 knl
[n,t X an x Xg | < Max {np!|yn |, |m2! ¥ ap g xx |,
k1 2 2 12
(2]
Imp! X an xoxil} (19)
kny4+1 2
Now
1‘:112
[np! X an k X | :n2liank|j‘xk |
kn 1 2 22 2
= np! [ap x [ (using (15)
22
< "2 (using (11) (20)
kn2
Inp! X appxx | < sup (na! | ap ¢ 9) (using (15)
1 2 1<k< ky 2
1
< (/2)"2  (using (9) (21)
s 0]
Ims! Loap pxk | < sup (n2! ap 1 |9) (using (15)
kn,-1 2 k +1 <k<eo 2
< (¢/2)™2 (using (10) (22)

using (20), (21) and (22) in (19) we have

"2 < Max {ny!lya | (/2)"2 (e/2)"2)

Hence n,! |yy | > "2 so that (23!} yu I)l 2 >z
2 2
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Proceeding in this manner using (15) and the inequalities (12), (13)

1/nm

and (14) we can show that (nm! [yn |) > €
m

so that (nm! | yn | ,)1 fom does not tend to zero as ny > ©
m

Hence (yy) ¢ x(F) which gives a contradiction so that (1) is necessary.

Using a method similar to that in the above theorem and taking

(xk) €V as

X = 21 for k — k,

= 0 for k= ki, i =1, 2,... where Iil':7\< 1 for some

z € F, we can establish the following theorem.
Theorem 5
A e(V,y (), if and ounly if
| 1/n

sup (n!lagg|) > 0asn - (23)

1<k<e I
where V = C(F) or m(F)

Note: If in addition, apx —+ 0 as k ~>o0 for each fixed n, then (23)
is the necessary and sufficient condition for A e (C(F), y ().

By using the Lemma and following the method given in K. Chan-
drasekkara Rao [1]in the complex case, we can establish the following
theorem.

Theorem 6

Ae(y (), m(I)) if and only if

sup 1
1<k<o (—- | ank | )l/k < M, where M is a constant.
1<k<e k! :

In the case of sequences in the complex ficld, the theorems cor-
responding to the Theorems 4 and 5 have been studied by Siraju-
deen [2, 3] and Sridhar [7].





