Commun. Fac. Sci. Univ. Ank. Series A1 V. 45. pp. 75-84 (1996)

PARALLEL PROJECTION AREA AND HOLDITCH'S THEOREM

H. BAYRAM KARADAĞ and SADIK KELEŞ

Department of Mathematics, Faculty of Science and Arts, Inönü University, Malatya, Turkey

(Received May 24, 1996; Accepted Nov. 4, 1996)

ABSTRACT

In this paper, the parallel projection area of a closed spatial curve formed under the motion $B(c_1)$ defined along the closed spherical curve c_1 [12] have been calculated. After that Holditch's Theorem [7] and its some corollaries which is well-known [3] have been generalized to closed spatial curve.

1. INTRODUCTION

The study of one-parameter closed motions become an interesting subject in kinematics after the work of Jacob Steiner [11] and H. Holditch [7].

During the second half of the nineteenth century, there appeared many publications about Steiner's and Holditch's Theorems; for example: C. Leudesdorf [9, 10] and A.B. Kempe [8].

After the work of Steiner and Holditch the first study about spherical motions was given by E.B. Elliott [2, 3, 4]. Another study in this field was also given by H.R. Müller [11]. H.H. Hacısalihoğlu [6] obtained a formula which is equivalent to the Holditch formula. R. Güneş and S. Keleş [5], using the area formula and the area vector given by W. Blaschke [1] and H.R. Müller [11], respectively, obtained the formula given by H.H. Hacısalihoğlu by a different method.

H. Pottmann [12] defined the spherical motion along a curve on a sphere and also he gave the parallel projection area of the spherical indicator using the parallel projection area vector.

In this study, H. Holditch's Theorem, which is well-known for one-parameter closed planar motions, was generalized to the closed spatial motions by using the area vector which was described by H.R. Müller [11] and parallel projection area formula which was given by H. Pottmann [12] and some results were obtained.

2. SPHERICAL CURVES

Let a c_1 -curve of class C^2 on a unit sphere K^1 of 3-dimensional Euclidean space is given by

$$\vec{\mathbf{e}}_{1}: \mathbf{t} \in \mathbf{I} \subset \mathbf{I} \mathbf{R} \rightarrow \vec{\mathbf{e}}_{1}(\mathbf{t}) \in \mathbf{I} \mathbf{R}^{3}, \|\vec{\mathbf{e}}_{1}\| = 1 , \ \vec{\mathbf{e}}_{1} \in \mathbf{C}^{2}(\mathbf{I})$$

$$\mathbf{c}_{1} = \vec{\mathbf{e}}_{1}(\mathbf{I})$$
(1)

where C^2 denotes the set of twice continuously differentiable curves.

Let us consider the sphere K coinciding with K^1 to be $K = K^1$, where K^1 is a fixed sphere and K is a moving sphere with respect to K^1 . In this case the curve c_1 on K^1 defines an accompanying motion $B(c_1)$. The end point $E_1(t) \in K$ of the vector $\vec{e_1}(t)$ lies on the curve c_1 which is always tangent any constant big circles at $E_1(t)$ as illustrated in Figure 1.

Fig. 1

At the initial time, given an orthonormal frame $\{0; \vec{e}_1(t_0), \vec{e}_2(t_0), \vec{e}_3(t_0)\}$, which are rightly linked to the origin point of the moving sphere K, is defined as

$$\vec{e}_{2}(t_{0}) = \frac{\vec{e}_{1}(t_{0})}{\|\vec{e}_{1}(t_{0})\|} , \ \vec{e}_{3}(t_{0}) = \vec{e}_{1}(t_{0}) \land \vec{e}_{2}(t_{0})$$
(2)

During the closed motion $B(c_1)$, a frame $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ can be defined for the point $E_1(t)$ of the curve c_1 at $t=t_1$ with the help of the limit $t \rightarrow t_1$. The closed motion $B(c_1)$ defined along the curve c_1 having completely the inflection point 2n ($n \in IN \cup \{0\}$) of c_1 is known as a closed motion [12].

Derivative equations of the moving frame can be written in the matrix form as

$$\begin{bmatrix} \dot{\mathbf{e}}_1 \\ \dot{\mathbf{e}}_2 \\ \dot{\mathbf{e}}_3 \end{bmatrix} = \begin{bmatrix} 0 \ \lambda \ 0 \\ -\lambda \ 0 \ \mu \\ 0 \ -\mu \ 0 \end{bmatrix} \begin{bmatrix} \dot{\mathbf{e}}_1 \\ \dot{\mathbf{e}}_2 \\ \dot{\mathbf{e}}_3 \end{bmatrix}$$
(3)

In equation (3), Darboux rotation vector is

$$\vec{w} = \mu \vec{e}_1 + \lambda \vec{e}_3 \tag{4}$$

Hence equation (3) can be also written in the following vector form

$$\dot{\vec{e}}_{1} = \vec{w} \wedge \vec{e}_{1}$$
, (i=1,2,3) (5)

If $\vec{w} \neq 0$ then we write the vectors

$$\vec{\mathbf{p}}_1 = \frac{\vec{\mathbf{w}}}{\|\vec{\mathbf{w}}\|}$$
, $\vec{\mathbf{p}}_2 = -\frac{\vec{\mathbf{w}}}{\|\vec{\mathbf{w}}\|}$.

The vectors \vec{p}_1 and \vec{p}_2 define two constant Pole points M_i , i=1,2, which are symmetric with respect to the origin point O, of the closed motion $B(c_1)$ at the time t. The points M_1 and M_2 are on the big circle q in the plane (\vec{e}_1, \vec{e}_3) .

In the case of $\vec{w} = \vec{0}$, an instantaneous standstill of the closed motion $B(c_1)$ is happened. During the closed motion $B(c_1)$, q is rolled without sliding on spherical evaluate q^1 of the curve c_1 .

Now, we discuss the close curve in IR^3 by the closed motion $B(c_1)$. Because, there is a very close relationship between spherical accompanying curves and curves theory in IR^3 .

Let us now consider the closed accompanying motion $B(c_1)$ that leaves origin point of a moving space R with respect to a fixed space R^1 unchanged. In such a way that we again have the derivative equations given by (3) for a space curve k in IR^3 . The end points of vectors \vec{e}_1 , \vec{e}_2 and \vec{e}_3 draw, respectively, spherical tangent indicator c_1 , principal normal indicator c_2 and binormal indicator c_3 of the space curve k. A closed orientated periodic curve k $\subset IR^3$ of the class C^1 is given as

$$\vec{x}: t \in I = [0;L) \subset IR \rightarrow \vec{x}(t) \in IR^3, \ \vec{x} \in C^1(R)$$

$$\vec{x}(t+L) = \vec{x}(t)$$

$$k = \vec{x}(I)$$
(7)

3. PARALLEL PROJECTION AREA AND HOLDITCH'S THEOREM

Definition 3.1. Let c(X) be a closed curve in 3-dimensional Euclidean space and X be a point on c(X). The vector satisfying

$$\vec{V}_{x} = \oint \vec{x}(t) \wedge \vec{x}(t)dt$$
(8)

is called the area vector of the curve c(X) [11] in which \vec{x} is the position vector of X.

Theorem 3.2. Let c(X) be a closed curve in 3-dimensional Euclidean space and X be a point on c(X). The projection area [11] of the planar region occurred by taking orthogonal projection onto a plane in the direction the unit vector \vec{n} of c(X) is

$$2F_{\chi^n} = \langle \vec{n}, \vec{V}_{\chi} \rangle . \tag{9}$$

Theorem 3.3. (Holditch's Theorem [7]). If a chord of a closed curve, of constant length a+b, be divided into two parts of lengths a, b, respectively the difference between the areas of the closed curve, and of the locus of the dividing point, will be

Fig. 2

After the above preparations, we can calculate the area vector \vec{V}_x of the orbit c(X), on IR^1 , of the fixed point $X \in R$, during the closed accompanying motion $B(c_1)$, along a closed spherical curve c_1 . Let I = [0,L) be the period interval of an instantaneous closed accompanying motion $B(c_1)$.

The position vector \vec{x} of a point $X \in \mathbb{R}$ with respect to the vectors \vec{e}_1 , \vec{e}_2 and \vec{e}_3 of K can be written as

$$\vec{x}(t) = x_1 \vec{e}_1(t) + x_2 \vec{e}_2(t) + x_3 \vec{e}_3(t)$$
 (10)

where x_1 , x_2 and x_3 are constant coordinates of X. From (8), the area vector of the orbit c(X) drawn by a point $X \in \mathbb{R}$ under the closed accompanying motion $B(c_1)$ is obtained as

$$\vec{V}_{x} = \sum_{i=1}^{3} x_{i}^{2} \vec{V}_{E_{i}} + 2 \sum_{\substack{i,k=1\\i < k}}^{3} x_{i} x_{i} \vec{V}_{E_{ik}}$$
(11)

where

$$\vec{V}_{E_i} = \int_0^L \vec{e}_i(t) \wedge \vec{e}_i(t) dt \quad , \quad \vec{V}_{E_{ik}} = \frac{1}{2} \int_0^L (\vec{e}_i(t) \wedge \vec{e}_k(t) + \vec{e}_k(t) \wedge \vec{e}_i(t)) dt \quad (12)$$

We have

$$\int_0^L \dot{\vec{e}}_i(t) dt = 0$$
 (13)

since $B(c_1)$ is a closed accompanying motion. By using equation (3), (12) and (13) we obtain

$$\vec{V}_{E_1} = \int_0^L \lambda \vec{e}_3(t) dt$$
, $\vec{V}_{E_3} = \int_0^L \mu \vec{e}_1(t) dt$, $\vec{V}_{E_2} = \vec{V}_{E_1} + \vec{V}_{E_3}$

and

$$\vec{V}_{E_{12}} = 0$$
, $\vec{V}_{E_{23}} = 0$, $\vec{V}_{E_{13}} = -\int_0^L \lambda \vec{e}_1(t) dt = -\int_0^L \mu \vec{e}_3(t) dt$ (14)

Substitution of (14) into (11) gives

$$\vec{V}_{X} = \sum_{i=1}^{3} x_{i}^{2} \vec{V}_{E_{i}} + 2x_{i} x_{3} \vec{V}_{E_{13}}$$
(15)

where $\vec{V}_{E_{13}}$ is the mixed area vector of the curve c_1 and the spherical curve c_3 being a spherical distance $\frac{\pi}{2}$ to c_1 .

The mixed area of orthogonal projections of curves c_1 and c_3 in the direction \vec{n} ($||\vec{n}|| = 1$) is

$$2F_{E_{13}^n} = \langle \vec{n}, \vec{V}_{E_{13}} \rangle \tag{16}$$

Corollary 3.4. Let F_{X^n} be the projection area of the planar region occurred by taking orthogonal projection onto a plane of c(X) and F_{X^p} be the projection area of the planar region happened by projecting onto same plane of c(X) in any direction. From here

$$F_{x^n} = \cos \theta F_{x^p}$$
(17)

where θ is the angle between two image planes.

Theorem 3.5. Let the closed accompanying motion $B(c_1)$, along the curve c on a unit sphere of the class C^2 , be given. Then, the orientated area $F_{X^p}^{-1}$ of parallel projection of orbit c(X) of a constant point $X \in \mathbb{R}$, in terms of the orientated areas $F_{E_{13}^p}^{-p}$ and $F_{E_1^p}^{-p}$, i=1,2,3 can be obtained as

$$F_{X^{p}} = 2x_{1}x_{3}F_{E_{13}^{p}} + \sum_{i=1}^{3} x_{i}^{2}F_{E_{1}^{p}}$$
(18)

Theorem 3.6. The orientated projection area F_{X^p} of the planar region occurred by parallel projection of the curve c(X) drawn by a constant point $X \in \mathbb{R}$ during the closed accompanying the motion $B(c_1)$ is a quadratic form according to coordinates x_i , i=1,2,3.

If the coordinate systems are chosen properly that is, if a proper rotation is applied, from eq. (18) the orientated projection area F_{X^p} is obtained as

$$F_{X^{p}} = \sum_{i=1}^{3} x_{i}^{2} F_{E_{i}^{p}}$$
(19)

Let X and Y be two different fixed points in the moving space R. Suppose that Z is a point with the components

$$z_i = \lambda x_i + \mu y_i$$
, $\lambda + \mu = 1$, $1 \le i \le 3$, (20)

on the straight line XY. The point Z has an orbit c(Z) in R^1 during the closed accompanying motion $B(c_1)$. The area bounded by the orthogonal

projection of the closed curve c(Z) on the plane is

$$F_{Z^{P}} = \lambda^{2} \sum_{i=1}^{3} F_{E_{i}^{P}} x_{i}^{2} + 2\lambda \mu \sum_{i=1}^{3} F_{E_{i}^{P}} x_{i} y_{i} + \mu^{2} \sum_{i=1}^{3} F_{E_{i}^{P}} y_{i}^{2}$$
(21)

From Eq.(12), mixed area vector of curves c(X) and c(Y) can be obtained as

$$\vec{V}_{XY} = \sum_{i=1}^{3} x_i y_i \vec{V}_{E_1} + (x_1 y_3 + y_1 x_3) \vec{V}_{E_{13}}$$
(22)

The orientated mixed area $F_{X^{p}Y^{p}}$ of the planar region occurred by taking parallel projection of curves c(X) and c(Y) onto a plane is

$$F_{X^{P}Y^{P}} = \sum_{i=1}^{3} x_{i} y_{i} F_{E_{i}}^{P} + (x_{1} y_{3} + y_{1} x_{3}) F_{E_{13}}^{P}$$
(23)

By using Eq.(23) in Eq.(21) we obtain

$$F_{Z^{P}} = \lambda^{2} \sum_{i=1}^{3} x_{i}^{P} F_{E_{i}^{P}} + 2\lambda \mu \left\{ F_{X^{P}Y^{P}} - (x_{1}y_{3} + y_{1}x_{3})F_{E_{13}^{P}} \right\} + \mu^{2} \sum_{i=1}^{3} x_{i}^{2} F_{E_{i}^{P}}$$
(24)

Since

$$\sum_{i=1}^{3} F_{E_{i}^{p}}(x_{i} - y_{i})^{2} = F_{X^{p}} - 2 \left\{ F_{X^{p}Y^{p}} - (x_{1}y_{3} + y_{1}x_{3})F_{E_{13}^{p}} \right\} + F_{Y^{p}}$$

and

$$\lambda + \mu = 1$$
 , $\lambda^2 = 1 - \lambda \mu$, $\mu^2 = \mu - \lambda \mu$ (25)

from Eq.(24), with some manipulations, we can see that

$$F_{Z^{p}} = \lambda F_{X^{p}} + \mu F_{Y^{p}} - \lambda \mu \sum_{i=1}^{3} F_{E_{i}}^{P}(x_{i} - y_{i})^{2}$$
(26)

The distance between the points X and Y can be given by the metric

$$D^{2}(X,Y) = \varepsilon \sum_{i=1}^{3} F_{E_{i}}^{p}(x_{i} - y_{i})^{2}$$
(27)

such that $\varepsilon = \pm 1$.

For distinct points X, Y and Z lying on the same straight line we can write

$$D(X,Y) = D(X,Z) + D(Z,Y)$$
 (28)

Eq.(28) can be re-written as

$$\frac{D(X,Z)}{D(X,Y)} + \frac{D(Z,Y)}{D(X,Y)} = 1$$

Since $\lambda + \mu = 1$, we can take λ and μ as

$$\lambda = \frac{D(X,Z)}{D(X,Y)} , \quad \mu = \frac{D(Z,Y)}{D(X,Y)}$$
(29)

Eq.(26) can be written as

$$F_{Z^{P}} = \frac{1}{D(X,Y)} \epsilon \left\{ F_{X^{P}} D(X,Z) + F_{Y^{P}} D(Z,Y) \right\} - \epsilon D(X,Z) D(Z,Y)$$
(30)

Suppose that the fixed point X and Y in the moving space draw same closed curve (Γ) during the closed accompanying motion B(c₁). In this case, $\vec{V}_{X} = \vec{V}_{Y}$ and that's why $F_{X^{p}} = F_{Y^{p}}$. Thus the Eq.(30) reduces to

$$F_{X^{p}} - F_{Z^{p}} = \varepsilon D(X,Z)D(Z,Y)$$
(31)

which gives generalized Holditch's Theorem.

Let ℓ be a fixed straight line in the moving space R and let four arbitrary fixed points M, X, Y and N be on the line ℓ . During the closed accompanying motion B(c₁), while the points M and N move on the same curve (Γ), the points X and Y draw the different curves c(X) and c(Y).

Corollary 3.7. Let F and F¹ be the areas between the parallel projections of the curves (Γ) and c(X) and of the curves (Γ) and c(Y), respectively. Then the ratio F/F¹ depends only on the relative positions of these four points.

Proof: According to (31), the area F^1 between the projection of the curves (Γ) and c(Y) is

$$F^{1} = F_{M^{p}} - F_{Y^{p}} = \varepsilon D(M,Y)D(Y,N)$$

and the area F between the projection of the curves (Γ) and c(X) is

$$F = F_{M^p} - F_{X^p} = \varepsilon D(M,X)D(X,N)$$

Then, joining the last two equalities the ratio F/F¹ can be obtained as

$$\frac{F}{F^{1}} = \frac{D(M,X)D(X,N)}{D(M,Y)D(Y,N)} \text{ or } \frac{F}{F^{1}} = \left(\frac{D(M,X)}{D(M,Y)}\right)^{2} \frac{D(M,Y)D(X,N)}{D(M,X)D(Y,N)}$$
(32)

The invariant (32) does not depend on the curve (Γ) and length of MN. It depends only on the choice of the points X and Y on MN. Since $X \neq Y$, it follows that $\frac{D(M,Y)}{D(M,X)} \neq 1$. Denote $\beta = \frac{D(M,Y)D(X,N)}{D(M,X)D(Y,N)}$. β is the cross ratio of the four points M, X, Y and N, i.e. $\beta = (MXYN)$.

Corollary 3.7 is the re-stated form of the corollary which has been given for one-parameter closed planar motions. Thus the corollary in [6] is generalized to the points of space and spatial motions.

Theorem 3.8. Let M, N, A and B be four different fixed points in the moving space R. Suppose that the line segments MN and AB meet at the point X. Then the pairs of the points M, N and A, B are on the same curve or the areas bounded by the parallel projection of the closed orbits of the pairs on the plane P are equal if and only if

$$D(M,X)D(X,N) = D(A,X)D(X,B).$$

Corollary 3.9. Let M, N, A and B be four different fixed points in the moving space R. Suppose that the line segments MN and AB meet at the point X. If the points M, N, A and B are on the same curve (Γ). Then it is $F_{MP} = F_{AP}$.

REFERENCES

- BLASCHKE, W., Zur Bewengungs Geometrie auf der kugel, S.B. Heidelberger Accad. Wish Math. KI, No.2, (1948).
- [2] ELLIOTT, E.B., A Theorem in Areas Including Holditch's, With its Annalogue in Three Dimensions, Messenger Math. 7 (1878), 150-156.
- [3] ELLIOTT, E.B., Some Theorems of Kinematics on a Sphere, Proc. London Math. Soc. 1 (1881), 47-57.
- [4] ELLIOTT, E.B., Extension to Curved Surfaces of a Former Theorem on plane areas, Messenger Math. 10 (1881), 156-158.
- [5] GÜNEŞ, R., KELEŞ, S., Closed Spherical Motions and Holditch's Theorem, Mechanism and Machine Theory, Vol. 29, No. 5 (1994), pp. 755-758.
- [6] HACISALİHOĞLU, H.H., On Closed Spherical Motions, Quarterly of Appl. Math. (1971), 269-276.
- [7] HOLDITCH, H., Geometrical Theorem, The Quaterly Journal of Pure and Applied Math. 2 (1858), 38.

- [8] KEMPE, A.B., Note on Mr. Luedesdorf's Theorem in Kinematics, Messenger Math. 7 (1878), 165-167.
- [9] LUEDESDORF, C., Theorem in Kinematics, Messenger Math. 7 (1877), 125-127.
- [10] LEUDESDORF, C., Note on the Theorem in Kinematics, Messenger Math. 8 (1878), 11-12.
- [11] MÜLLER, H.R., Erveiterung des Satzes von Holditch für Geschlossene Raunkurven, Abhandl. Braunschw. Wiss. Ges. 31 (1980), 129-135.
- [12] POTTMANN, H., Über Geschlossene Spharische Kurven, El. Math. Vol. 42 (1987), 62-68.
- [13] STEINER, J., Gesamelte Werke, Berlin (1881/1882).