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ABSTRACT

In this paper, the parallel projection area of a closed spatial curve formed under the 
motion B(Cj) defined along the closed spherical curve c^ [12] have been calculated. After 
that Holditch’s Theorem [7] and its some corollaries which is well-known [3] have been 
generalized to closed spatial curve.

1. INTRODUCTION

The study of one-parameter closed motions become an interesting subject 
in kinematics after the work of Jacob Steiner [11] and H. Holditch [7],

During the second half of the nineteenth ccntury, there appeared 
many publications about Steiner’s and Holditch’s Theorems; for example; 
C. Leudesdorf [9, 10] and A.B. Kempe [8],

After the work of Steiner and Holditch the first study about spherical 
motions was given by E.B. Elliott [2, 3, 4]. Another study in this field 
was also given by H.R. Müller [11]. H.H. Hacısalihoğlu [6] obtained a 
formula which is equivalent to the Holditch formula. R. Güneş and S. 
Keleş [5], using the area formula and the area vector given by W. 
Blaschke [1] and HE. Müller [11], respectively, obtained the formula 
given by H.H. Hacısalihoğlu by a different method.

H. Pottmann [12] defined the spherical motion along a curve on a 
sphere and also he gave the parallel projection area of the spherical 
indicator using the parallel projection area vector.

İn this study, H. Holditch’s Theorem, which is well-known for 
one-parameter closed planar motions, was generalized to the closed spatial 
motions by using the area vector which was described by HE. Müller
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[11] and parallel projection area formula which was given by H. Pottmann
[12] and some results were obtained.

2. SPHERICAL CURVES

Let a Cj-curve of class on a unit sphere K‘ of 3-dimensional 
Euclidean space is given by

-» 3 -► -.2
Op t6fcIR->ej(t)elR , ||ej| = 1 , e^eC®

C; =
(1)

where denotes the set of twice continuously differentiable curves.

Let us consider the sphere K coinciding with K* to be K = K\ 
where K* is a fixed sphere and K is a moving sphere with respect to K'. 
In this case the curve Cj on K* defmes an accompanying motion B(Cj). 
The end point Ej(t)eK of the vector e^® lies on the curve which is 
always tangent any constant big circles at E^ft) as illustrated in Figüre 1.

Fig. 1

At the initial time, given an orthonormal frame {0;e|(t„),e2(9,e/ty)}, which 
are rightly linked to the origin point of the moving sphere K, is defined
as

ÎA> = 4®
1^1(911

’ ejCV = A e^(9 (^)



PARALLEL PROJECTION AREA AND HOLDITCH’S THEOREM 77

During the closed motion B(C[), a frame {eı’*^2’^3} can be defıned for the 

point E^(t) of the curve c^ at t=t^ with the help of the limit t—>tp The 
closed motion B(Cj) defıned along the curve c^ having completely the 
inflection point 2n (nelNu{0}) of C| is known as a closed motion [12].

Derivative equations of the moving frame can be written in the 
matnx form as

e,'1

e.'3J

0X0
-X 0 (i

e.'3J

(3)^2 ^2

_ 0 -|1 0.

In equation (3), Darboux rotation vector is 

w = pC| + Xej (4)

Hence equation (3) can be also written in the following vector form

Cj = w A Cj , (i=123)

If w o then we write the vectors

(5)

P1
w 

lAı
'M

lAl’ P2 = ■

The vectors pj and p^ define two constant Pole points M., i=l,2, 
which are symmetric with respect to the origin point O, of the closed 
motion B(Cj) at the time t. The points and are on the big circle q 
in the plane

In the case of w = 0, an instantaneous standstili of the closed motion 
B(c^) is happened. During the closed motion B(Cj), q is rolled without 
sliding on spherical evaluate q* of the curve c^

Now, we discuss the close curve in IR^ by the closed motion B(Cj). 
Because, there is a very close relationship between spherical accompanying 
curves and curves theory in IR^.

Let us now consider the closed accompanying motion B(Cj) that 
leaves origin point of a moving space R with respect to a fixcd space R* 
unchanged. In such a way that we again have the derivative eguations 
given by (3) for a space curve k in IR^.
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The end points of vectors e^ and e^ draw, respectively, spherical
tangent indicator c Principal normal indicator e., and binormal indicator

S of the space curve k. A closed orientated periodic curve kcIR’ of the 
class is given as

x; tel = [0;L)<zIR-^x{t)6İR , xgc'(R)

x(t+L) = x(t) 
k = x(I)

(7)

3. PARALLEL PROJECTİON AREA AND HOLDITCH’S THEOREM

Defînition 3.1. Let c(X) be a closed curve in 3-dimensional
Euclidean space and X be a point on c(X). The vector satisfying

VX x(t) A x(t)dt

is called the area vector of the curve c(X) [11] in which 
vector of X.

(8)

X is the position

Theorem 33. Let c(X) be a closed curve in 3-dimensional Euclidean 
space and X be a point on c(X). The projection area [11] of the planar 
region occurred by taking orthogonal projection onto a plane in the 
direction the unit vector n of c(X) is

2F.'x" (9)= .

Theorem 33. (Holditch’s Theorem [7]). If a chord of a closed curve, 
of constant length a+b, be divided into two parts of lengths a, b, 
respectively the difference between the areas of the closed curve, and of 
the locus of the dividing point, will be

F = F„ - F„ = Tcabr X

N
b

a
X.

c(X) (D

Fig. 2
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After the above preparations, we can calculate the area vector \ of the 
orbit c(X), on IR‘, of the fixed point X€R, during the closed 
accompanying motion B(Cj), along a closed spherical curve Cj. Let I = 
[0X) be the period interval of an instantaneous closed accompanying 
motion B(Cj).

The position vector x of a point XgR with respect to the vectors 
e^ and e^of K can be written as

e,.

X(t) = Xıe,(t) + + Âjedt) (10)

whcre Xp and are constant coordinates of X. From (8), the area 
vector of the orbit c(X) drawn by a point Xg R under the closed 
accompanying motion B(Cj) is obtained as

= E + 2 y x.x,y, X 1 E 1 k E.
i-:l 1 1 V-1 “

(11)

where

e.(t) A e.(t)dt , 
'o

Ve 
ık

We have

İ4c=l 
i<k

ıL

(e.(t) A e^(t) + ej,(t) a c7t))dt (12)
'o

e.(t)dt = 0 
'o (13)

since B(c^) is a closed accompanying motion. By using equation (3), (12) 
and (13) we obtain

f L -♦

A,e3(t)dt , Vg
'o -

geı(t)dt , V 
'o

= V„ + V
E, E3

= i
2

3

and

V.E12 '23 '13

pL

Jıe/Odt = - 
o 'o (14)= 0 ’ Vg. = 0 ’ Ve

L

ge^lOdt

Substitution of (14) into (11) givcs

■Ta
(15)

i=l
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whcre V^1 İS the mixed area vector of the curve c^ and the spherical
curve Cj being a spherical distance •Jto c^

The mixed area of orthogonal projections of curves c^ and c^ in the 
direction n (||n|| = 1) is

2Fe" 
^13

= <n,V > (16)

Corollary 3.4. Let F
occurred by taking orthogonal projection onto a plane of c(X) and F

•n be the projection area of the planar rcgion

XP
be

the projection area of the planar region happened by projecting onto same 
plane of c(X) in any direction. From here

F
X'■n

= cos 0 F
XP

(17)

where 0 is the angle between two image plancs.

Theorem 3.5. Let the closed accompanying motion Bfc^), along the
curve c on a unit sphere of the class C", be given. Then, the orientated

1
of parallel projection of orbit c(X) of a constant point XeR, inarea F XP

terms of the orientated areas F^p and Fj^p, i=l,2,3 can be obtained as 

3
Pk” = 2XıX3FjpP^ + £ xJf ,̂p (18)

of the planar regionTheorem 3.6. The orientated projection area F^^ 
occurred by parallel projection of the curve c(X) drawn by a constant
point XgR during the closed accompanying the motion B(c^) is a 
quadratic form according to coordinates x., i=l,2,3.

If the coordinate systems are chosen properly that is, if a proper
rotation is applied, from eq. (18) the orientated projection area F 
obtained as

XP
is

i=l (19)

Let X and Y be two different fixed poinLs in the moving 
Suppose that Z is a point with the components

space R.

z. = ?tx. + |j,y. , X+p=l,l<i<3, (20)

F P

on the straight line XY. The point Z has an orbit c(Z) in R* during the 
closed accompanying motion B(Cj). The arca bounded by the orthogonal
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projection of the closed curve c(Z) on the plane is

2 3
2Fz” = X + 9 3 2

i=l i=l i=l ‘
(21)

From Eq.(12), mixed area vector of curves c(X) and c(Y) can be obtained 
as

V*XY

3 -► -►= Y + yıX_,)V
i=l 13

(22)

The orientated mixed area F_____  ________ _____ _ p^p of the planar region occurred by taking 
parallel projection of curves c(X) and c(Y) onto a plane is

3
FxPyP = X ’^iyiFE‘’+ + yı^3)P]^3 (23)

By using Eq.(23) in Eq.(21) we obtain

2 3 2 32 p
= X X w + 2Xg F^p^ı 

i=l ‘ '
.PvP

- (Xjy,+y;XpF₺P j + g' £ xX- 

i=l
(24)P

Since
3

and

2ZF^-<x, -y,) =FxP-2jF,'xV
■ (x,y,+y,Xj)FBPJ + EyP

X + g = 1 , y} = 1 - Âg , g2 = g - Âg (25)

from Eq.(24), with some manipulations, we can see that

I^y” ■ ■ y? (26)
i=l *

The distance between the points X and Y can be given by the metric

2
D (X,Y) = e X Fı,p(Xj - yp (27)

i=l

such that e = ±1.

For distinct points X, Y and Z lying on the same straight line we can 
write

D(X,Y) = D(X,Z) + D(Z,Y) (28)

3 2
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Eq.(28) can be re-written as

D(X7) + D(Z,Y)
D(X,Y) D(X,Y)

Since X+g = 1, we can take X and g as

D(X/) 
D(X,Y)

D(Z,Y)
D(X,Y) (29)

Eq.(26) can be written as

Pz’’ = 1 
D(X,Y)

e jF^pDCKZ) + FypD(Z,Y)| - eD(X7)D(Z,Y) (30)

X = , (I =

= 1

Suppose that the fixed point X and Y in the moving space draw 
same closed curve (F) during the closed accompanying motion B(Cj). In
this case, V„ = and that’s why F 

X Y XP
Thus the Eq.(30) reduces to= F

yp-

^XP ■ = eD(X,Z)D(Z,Y)XP
(31)

which gives generalized Holditch’s Theorem.

Let be a fixed straight line in the moving space R and let four 
arbitrary fixed points M, X, Y and N be on the line 6. During the closed 
accompanying motion B(Cj), while the points M and N move on the same 
curve (F), the points X and Y draw the different curves c(X) and c(Y).

Corollary 3.7. Let F and F' be the areas between the parallel 
projections of the curves (F) and c(X) and of the curves (F) and c(Y), 
respectively. Then the ratio F/F' depends only on the relative positions of 
these four points.

Proof: According to (31), the area F' between the projection of the 
curves (F) and c(Y) is

= F
mp

- F^p = eD(M,Y)D(Y,N)

and the area F between the projection of the curves (F) and c(X) is

F = F „ mp
- F = eD(M,X)D(X,N)

XF

Then, joining the last two equalities the ratio F/F' can be obtained as
2

f' D(M,Y)D(Y^Ç
rXM,Y)D(XN)Z =

pi \D(M,Y)/ D(M,59D(YJ4)or -i- = (32)
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The invariant (32) does not depend on the curve (T) and length of MN. 
It depends only on the choice of the points X and Y on MN. Since
X5^Y, it follows that D(M.Y)

D(MX)
1. Denote P = D(M.Y)1YXN)

DÖVIX)D(YJN)
. p is the cross

ratio of the four points M, X, Y and N, i.e. P = (MXYN).

Corollary 3.7 is the re-stated form of the corollary which has been 
given for one-parameter closed planar motions. Thus the corollary in [6] 
is generalized to the points of space and spatial motions.

Theorem 3.8. Let M, N, A and B be four different fixed points in 
the moving space R. Suppose that the line segraents MN and AB meet at 
the point X. Then the pairs of the points M, N and A, B are on the 
same curve or the areas bounded by the parallel projection of the closed 
orbits of the pairs on the plane P are equal if and only if

D(M;>C)D(XJ\f) = D(A,X)D(X,B).

Corollary 3.9. Let M, N, A and B be four different fıxed points in 
the moving space R. Suppose that the line segments MN and AB meet at 
the point X. If the points M, N, A and B are on the same curve (T).

= FThen it is F „
mp ap'
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