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ABSTRACT

In this paper, the parallel projection area of a closed spatial curve formed under the
motion B(c,) defined along the closed spherical curve ¢, [12] have been calculated. After
that Holditch’s Theorem [7] and its some corollaries which is well-known [3] have been
generalized to closed spatial curve,

1. INTRODUCTION

The study of one-parameter closed motions become an interesting subject
in kinematics after the work of Jacob Steiner [11] and H. Holditch [7].

During the second half of the nineteenth century, there appeared
many publications about Steiner’s and Holditch’s Theorems; for example:
C. Leudesdorf [9, 10] and A.B. Kempe [8].

After the work of Steiner and Holditch the first study about spherical
motions was given by E.B. Elliott [2, 3, 4]. Another study in this field
was also given by H.R. Miiller [11]. H.H. Hacisalihoglu [6] obtained a
formula which is equivalent to the Holditch formula, R. Giines and S.
Keles [5], using the area formula and the arca vector given by W.
Blaschke [1] and H.R. Miiller [11], respectively, obtained the formula
given by H.H. Hacisalihoglu by a different method.

H. Pottmann [12] defined the spherical motion along a curve on a
sphere and also he gave the parallel projection areca of the spherical
indicator using the parallel projection areca vector.

In this study, H. Holditch’s Theorem, which is well-known for
one-parameter closed planar motions, was generalized to the closed spatial
motions by using the arca vector which was described by H.R. Miiller
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[11] and parallel projection area formula which was given by H. Pottmann
[12] and some results were obtained.

2. SPHERICAL CURVES

Let a c,-curve of class C? on a unit sphere K! of 3-dimensional
Euclidean space is given by

-> > 3 > -> 2
2 telcR-E MelR, &)l = 1, 8eCO
¢, =¢ed )

where C? denotes the set of twice continuously differentiable curves.

Let us consider the sphere K coinciding with K' to be K = K,
where K! is a fixed sphere and K is a moving sphere with respect to K.
In this case the curve ¢, on K! defnles an accompanying motion B(c)).
The end point E ()eK of the vector ¢,(® lies on the curve c which is
always tangent any constant big circles at E () as illustrated in Figure 1.

Fig. 1

At the initial time, given an orthonormal frame {O;El(to),-’z(to)é(to)}, which
are rightly linked to the origin point of the moving sphere K, is defined
as
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During the closed motion B(_cl), a frame {%%%} can be defined for the
point E (t) of the curve c, at t=t, with the help of the limit t—t. The
closed motion B(c,) defined along the curve c, having completely the
inflection point 2n (ne INU{0}) of ¢, is known as a closed motion [12].

Derivative equations of the moving frame can be written in the
matrix form as

“ll Toao]|&
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-é O-uo c,

3
In equation (3), Darboux rotation vector is

W e A @

Hence equation (3) can be also written in the following vector form

S =WaAl L (=123 )

1

If w # 0 then we write the vectors

The vectors Bl and i;z define two constant Pole points Mi, i=1,2,
which are symmetric with respect to the origin point O, of the closed
motion B(c,)) at 1hc time t. The points M, and M, are on the big circle q
in the planc (€,

In the case of W = 0, an instantaneous standstill of the closed motion
B(c,) is happened. During the closed motion B(c)), q is rolled without
sliding on spherical evaluate q' of the curve c,.

Now, we discuss the close curve in IR® by the closed motion B(c)).
Because, there is a very close relationship between spherical accompanying
curves and curves theory in IR>.

Let us now consider the closed accompanying motion B(c)) that
leaves origin point of a moving space R with respect to a fixed space R!
unchanged. In such a way that we again have the derivative equations
given by (3) for a space curve k in IR>,
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> > >
The end points of vectors €, ¢, and e, draw, respectively, spherical
tangent indicator c,, principal normal indicator ¢, and binormal indicator

c, of the space curve k. A closed orientated periodic curve kcIR? of the

class C! is given as

% tel = [OL)cIR—XWeIR , XC R)
X(t+L) = X(t) @)
k = X(D)

3. PARALLEL PROJECTION AREA AND HOLDITCH’S THEOREM

Definition 3.1. Let ¢(X) be a closed curve in 3-dimensional
Euclidean space and X be a point on c¢(X). The vector satisfying

Vv = §§(t) A X(®dt @®)

is called the area vector of the curve c(X) {11] in which X is the position
vector of X.

Theorem 3.2. Let ¢(X) be a closed curve in 3-dimensional Euclidean
space and X be a point on c(X). The projection area [11] of the planar
region occurred by taking orthogonal projection onto a plane in the
direction the unit vector 0 of c(X) is

2P = @V) . | ©)

Theorem 3.3. (Holditch’s Theorem [7]). If a chord of a closed curve,
of constant length a+b, be divided into two parts of lengths a, b,
respectively the difference between the arcas of the closed curve, and of
the locus of the dividing point, will be

F=F.-F =nab

[

)

Fig. 2
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After the above preparations, we can calculate the area vector V, of the
orbit ¢(X), on IR!, of the fixed point XeR, during the closed
accompanying motion B(c,), along a closed spherical curve ¢,. Let I =
[OL) be the period interval of an instantancous closed accompanying
motion B(cl).

The position vector X of a point XeR with respect to the vectors 31,

- - .
e, and eaof K can be written as

X(1) = x 80 + x5, + x2,0 (10)

where x;, x, and X, are constant coordinates of X. From (8), the area
vector of the orbit c(X) drawn by a point XeR wunder the closed
accompanying motion B(c ) is obtained as

- 3 zi; 3 -
V = ; xVy + 2 % xixkv;Eik (11)
i<k
where
L . L .
Ve = L SO A,V = % f C® A ® + M A )t (12)
0
We have
L »
0

since B(cl) is a closed accompanying motion. By using equation (3), (12)
and (13) we obtain

L L
VEI - J;) 7»63(t)dt , VE3 = J:) ue (Bdt , VE2 = VEl + VE3

and

L L
V, =0,V_, =0,V = —L Ae (Ddt = -JO pé,(tdt 14)

Substitution of (14) into (11) gives

- 3

Vg = E xizi’/El + 2)(1x3VE[3 (15)

i=
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-
where VE13 is the mixed arca vector of the curve c
curve ¢, being a spherical distance LA c,.

, and the spherical

The mlxed arca of orthogonal projections of curves ¢, and ¢, in the
direction 1 (Il = 1) is

ZFEL = <n’VE13> (16)

Corollary 34. Let F_ be the projection area of the planar region
occurred by taking orthogonal projection onto a plane of ¢(X) and FXP be
the projection area of the planar region happened by projecting onto same
plane of ¢(X) in any direction. From here

F = cos 0 Fxp (17)

Xn
where 0 is the angle between two image plancs.

Theorem 3.5. Let the closed accompanying motion B(c ), along the
curve ¢ on a unit sphere of the class 2, be given. Then, the orientated
arca FXP of parallel projection of orbit ¢(X) of a constant point XeR, in
terms of the orientated areas FE;173 and FEiP’ i=1,2,3 can be obtained as

3
Fer = 2xFp + 3, xFy (18)
i=1
Theorem 3.6. The orientated projection area F__ of the planar region
occurred by parallel projection of the curve c(X) drawn by a constant
point XeR during the closed accompanying the motion B(c) is a
quadratic form according to coordinates x,, i=1,23.

If the coordinate systems are chosen properly that is, if a proper
rotation is applied, from eq. (18) the orientated projection area FXp is
obtained as

3
FXp = ; xing

19)
Let X and Y be two different fixed points in the moving space R.
Suppose that Z is a point with the components

=Ax +yy, , A+p=1,1<i<3, 20)

on the straight line XY. The point Z has an orbit ¢(Z) in R' during the
closed accompanying motion B(c,). The arca bounded by the orthogonal
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projection of the closed curve ¢(Z) on the plane is

3 : ) 3 5
> Faxy; + 1 ZFElpyi (21)

i=1 i=1

2 3
Ep=2% 2{ 1:71%1’)%2 + 2Aun
i=

From Eq.(12), mixed area vector of curves ¢(X) and ¢(Y) can be obtained
as

- 3 - -
Vi = Z xiyiVEl +(xy, + ylx3)VE13 22)

i=1

The orientated mixed area FX , of the planar region occurred by taking
parallel projection of curves c&) and ¢(Y) onto a plane is

3
Fyeye = 2 xyFprt (x,y, + yx)Fp (23)

i=1

By using Eq.(23) in Eq.(21) we obtain

2 3 P 2 3
Fp=X Y x FElP + 2Au <Fprp - (x1y3+ylx3)FE;;3} + M ; xiZFE‘p (24)

i=l

Since

S 2

1-=21 B, - ¥) = Fye - 2 (Fyopr - (xys#yx)Fg | + Fyp
and

A+pu=1, A2=1-a , pP2=p-Au (25)

from Eq.(24), with some manipulations, we can see that

S 2
Fp = AFy + WFp - Mt Y Fr(x; - y) (26)

i=1

The distance between the points X and Y can be given by the metric

2 3 2
D (X9Y) =€ z FEP(Xi - yl) (27)
i=l !
such that € = 1.

For distinct points X, Y and Z lying on the same straight line we can
write

DX,Y) = D(X,Z) + D(Z.Y) (28)
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Eq.(28) can be re-written as

DXD , D&Y) _
DXY) DXY)
Since A+l = 1, we can take A and W as
DX2 DZY)
A=22  p= 2l
bxy "7 Dxy @

Eq.(26) can be written as

Fp = D&Y) e [FeD(X2) + FyDZY)| - DXZDZY)  (30)

Suppose that the fixed point X and Y in the moving space draw
same closgd curve (I') during the closed accompanying motion B(c)). In
this case, Vi =V, and that’s why FXP = pr' Thus the Eq.(30) reduces to

F, - F, = eDXZDEZY) 3

which gives generalized Holditch’s Theorem.

Let ¢ be a fixed straight line in the moving space R and let four
arbitrary fixed points M, X, Y and N be on the linc ¢. During the closed
accompanying motion B{(c ), while the points M and N move on the same
curve (I'), the points X and Y draw the different curves c¢(X) and c(Y).

Corollary 3.7. Let F and F' be the areas between the parallel
projections of the curves (I') and ¢(X) and of the curves (I) and c(Y),
respectively. Then the ratio F/F' depends only on the relative positions of
these four points.

Proof: According to (31), the area F' between the projection of the
curves (I') and c(Y) is

1 =

F = FMP - FYP = ¢eD(M,Y)D(Y ,N)

and the area F between the projection of the curves (') and c(X) is
F = FMP - FXP = eD(M,X)D(X,N)

Then, joining the last two equalities the ratio F/F' can be obtained as

E _ DOXDO0Y o £ _ (D040 " DMY)DXN) -
§ DMYDYN ¢ \DMY)) DMXDYN
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The invariant (32) does not depend on the curve (I) and length of MN.
It depends only on the choice of the points X and Y on MN. Since

X#Y, it follows that DM.Y) . 1. Denote B= DM.YDXN) B is the cross
, DMX) DMXDYN)
ratio of the four points M, X, Y and N, ic. B = (MXYN).

Corollary 3.7 is the re-stated form of the corollary which has been
given for one-parameter closed planar motions. Thus the corollary in [6]
is generalized to the points of space and spatial motions.

Theorem 3.8. Let M, N, A and B be four different fixed points in
the moving space R. Suppose that the line segments MN and AB meet at
the point X. Then the pairs of the points M, N and A, B are on the
same curve or the arcas bounded by the parallel projection of the closed
orbits of the pairs on the plane P are equal if and only if

DM.X)D(X.N) = D(A,X)D(X,B).

Corollary 3.9. Let M, N, A and B be four different fixed points in
the moving space R. Suppose that the line segments MN and AB meet at
the point X. If the points M, N, A and B arec on the same curve (I).

Then itis F _=F .
MP AP
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