ON THE SEQUENCE OF FOURIER COEFFICIENTS BY \|T\|.C \boldsymbol{C}_{1} METHOD

RAJIV SINHA* and HEMANT KUMAR**

* Department of Mathematics, S.M. College, Chandausi (U.P.), India.
** Department of Physics, S.M. College, Chandausi (U.P.), India.
(Received Oct. 25, 1995; Accepted Feb. 29, 1996)

ABSTRACT

Mohanty and Nanda [2] were the first to establish a result for (C,1) i.e. C_{1}-summability of the sequence $\left\{\mathrm{n}_{\mathrm{B}}(\mathrm{x})\right\}$. Varshney [5] established a theorem on $\left(\mathbb{N}, \frac{1}{\mathrm{n}+1}\right) \mathrm{C}_{1}$ summability. In the present paper we have discussed ($\left.a_{n, k}\right) C_{1}$-summability of the sequence $\left\{n \mathrm{~B}_{\mathrm{n}}(\mathrm{x})\right\}$ which includes the result due to Tripathi and Singh [7].

1. Let $\sum \mathrm{U}_{\mathrm{n}}$ be a given infinite series with the sequence of partial sums $\left\{S_{n}\right\}$. Let $\|T\| \equiv\left(a_{n, k}\right)$ be infinite triangular matrix with real constants. Then sequence to sequence transformation.

$$
t_{n}=\sum_{k=0}^{n} a_{n, k} S_{k} \quad n=0,1,2, \ldots
$$

defines the T-transform of the sequence $\left\{\mathrm{S}_{\mathrm{n}}\right\}$. Recall that the matrix elements $a_{n, k}=0$ for each $K>n$, then the matrix is called triangular.

The series $\sum U_{n}$ is said to be T-summable to S, if $\lim _{n \rightarrow \infty} t_{n}=S$.
The regularity conditions for T -method are:
(1) There exists a constant K such that $\sum_{k=0}^{n}\left|a_{n, k}\right|<K$, for each n;
(2) For ever $K, \lim _{n \rightarrow \infty} a_{n, k}=0$; and
(3) $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{n, k}=1$.

The matrix T reduces to Nörlund matrix generated by the sequence of coefficients $\left\{p_{n}\right\}$ if

$$
a_{n, k}=\left\{\begin{array}{ccc}
p_{n-k} / P_{n} & , & \text { if } K \leq n \\
0 & , & \text { if } K>n
\end{array}\right.
$$

where $P_{n}=\sum_{r=0}^{n} p_{r} \neq 0$.
If the method of summability $\|\mathrm{T}\|$ is applied to Cesàro means of order one, another method of summability $\|\mathrm{T}\| . \mathrm{C}_{1}$ is obtained.
2. Let $f(x)$ be a periodic function with period 2π and integrable in the sense of Lebesgue over an interval $(-\pi, \pi)$. Let the Fourier series of $f(x)$ be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \frac{1}{2} a_{0}+\sum_{n=1}^{\infty} A_{n}(x) \tag{2.1}
\end{equation*}
$$

and then the conjugate series of (2.1) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right)=\sum_{n=1}^{\infty} B_{n}(x) \tag{2.2}
\end{equation*}
$$

We write

$$
\psi(t)=f(x+t)-f(x-t)-L
$$

(where L is some constant),

$$
\begin{aligned}
& \Psi_{1}(t)=\int_{0}^{t} \psi(\mathrm{u}) \mathrm{du} ; \\
& \mathrm{A}_{\mathrm{n},}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}, \mathrm{k}} ;
\end{aligned}
$$

and $\tau=[1 / t]$ the integral part of $1 / t$.
3. Mohanty and Nanda [2] proved the following theorem:

Theorem A: If

$$
\psi(t)=O\left(\frac{1}{\log (1 / t)}\right) \text { as } t \rightarrow 0
$$

and $a_{n}=O\left(n^{-\delta}\right) ; b_{n}=O\left(n^{-\delta}\right), 0<\delta<1$, then the sequence $\left\{n B_{n}(x)\right\}$ is $(\mathrm{C}, 1)$ summable to the value L / π.

Varshney [5] generalized the above theorem of Mohanty and Nanda [2] which was later on extended by Tripathi and Singh [7] in the following form:

Theorem B: Let a function $\mathrm{p}(\mathrm{u})$, tending to infinity with u and a
sequence $\left\{p_{n}\right\}$ be defined as follows in terms of $p(u)$, monotonic decreasing and strictly positive for $\mathbf{u} \geq 0$

$$
\begin{align*}
& P(u) \equiv \int_{0}^{u} p(x) d x, p_{n} \equiv p(n) \tag{3.1}\\
& \Psi_{1}(t)=O\left(\frac{t}{\varepsilon(1 / t)}\right), \text { as } t \rightarrow+0 \tag{3.2}
\end{align*}
$$

$\varepsilon(t)$ being positive non-decreasing with t and

$$
\begin{equation*}
\int_{1}^{\mathrm{n}} \frac{\mathrm{P}(\mathrm{x})}{\mathrm{x} \varepsilon(\mathrm{x})} \mathrm{dx}=\mathrm{O}\left(\mathrm{P}_{(\mathrm{n})}\right) \tag{3.3}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\left(N, p_{n}\right) \cdot C_{1}$ to the value L / π. The object of this paper is to generalize the above theorem of Tripathi and Singh [8] for $\|T\| . C_{1}$ summability. However, our theorem is as follows:

Theorem: Let $\|T\| \equiv\left(a_{n, k}\right)$ be an infinite triangular matrix with $a_{n, k} \geq 0$ and $a_{n, k}$ be defined by $a_{n, k} \equiv a_{n}(k), a_{n}(u)$ being a strictly positive monotonic non-increasing function and

$$
\begin{equation*}
A(n, n-u)=\int_{0}^{u} a_{n}(n-t) d t \rightarrow 1 \text { as } n \rightarrow \infty \text { for fixed } u \geq 0 \tag{4.1}
\end{equation*}
$$

Let $\varepsilon(t)$ be positive non-decreasing function of t.

If

$$
\begin{equation*}
\Psi_{1}(t)=O\left(\frac{t}{\varepsilon(1 / t)}\right) \text {, as } t \rightarrow+0 \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{1}^{\mathrm{n}} \frac{\mathrm{~A}(\mathrm{n}, \mathrm{n}-\mathrm{u})}{\mathrm{u} \varepsilon(\mathrm{u})} \mathrm{du}=\mathrm{O}(1), \text { as } \mathrm{n} \rightarrow \infty \tag{4.3}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $\|T\| . C_{1}$ to the value L / π.
We note that (4.2) and (3.2) are same while conditions (4.1) and (4.3) in the case of ($\mathrm{N}, \mathrm{p}_{n}$). C_{1} summability reduce to conditions (3.1) and (3.3), respectively.
5. For the proof of the theorem we require the following lemmas:

Lemma 1: (Kishore and Hotta [8]).
If $\left\{a_{n, k}\right\}_{k=0}^{n}$ is non-negative and non-decreasing with respect to k, then
for $0 \leq \mathrm{a}<\mathrm{b} \leq \infty, 0 \leq \mathrm{t} \leq \pi$ and any n ,

$$
\begin{equation*}
\left|\sum_{k=a}^{b} a_{n, n-k} e^{i(n-k) \mid}\right| \leq K A_{n, n-\tau} \tag{5.1}
\end{equation*}
$$

Lemma 2: (Mittal [10]). If $0 \leq t \leq 1 / n$, then

$$
\begin{equation*}
\left|Q_{n}(t)\right| \equiv \frac{1}{\pi} \sum_{k=1}^{n} a_{n \cdot k}\left(\frac{\sin k t}{k t^{2}}-\frac{\cos k t}{t}\right)=O(n) \tag{5.2}
\end{equation*}
$$

Lemma 3: (Mittal [10]). If $0<t \leq \pi$, then

$$
\begin{equation*}
\left|Q_{n}(t)\right|=O\left(\frac{A_{n, p-\tau}}{t}\right) \tag{5.3}
\end{equation*}
$$

6. Proof of the Theorem: If we denote the (C,1) transform of the sequence $\left\{n B_{n}(x)\right\}$ by t_{n}, we have after Mohanty and Nanda [2]

$$
\begin{aligned}
\mathrm{t}_{\mathrm{n}}-\frac{\mathrm{L}}{\pi} & =\frac{1}{n} \sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{rC}_{\mathrm{r}}(\mathrm{x})-\mathrm{L} / \pi \\
& =\frac{1}{\pi} \int_{0}^{\pi} \psi(\mathrm{t})\left(\frac{1}{4 n} \frac{1}{2}-\frac{\sin n t}{\sin ^{2} \frac{1}{2} t}-\frac{\cos \mathrm{nt}}{\tan \frac{1}{2} t}\right) d t \\
& +\frac{1}{2 \pi} \int_{0}^{\pi} \psi(t) \sin n t d t+O(1) \\
& =\frac{1}{\pi} \int_{0}^{\pi} \psi(t)\left[\frac{\sin n t}{n t^{2}}-\frac{\cos n t}{t}\right] d t+O(1)
\end{aligned}
$$

by Riemann-Lebesgue theorem.
On account of the regularity of the method of summability we have to show that under our assumptions

$$
\begin{equation*}
I=\int_{0}^{\pi} \frac{\psi(t)}{\pi} \sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}, \mathrm{k}}\left[\frac{\sin \mathrm{kt}}{\mathrm{kt}^{2}}-\frac{\cos \mathrm{kt}}{\mathrm{t}}\right] \mathrm{dt}=\mathrm{O}(1) \tag{6.1}
\end{equation*}
$$

as $\mathbf{n} \rightarrow \infty$.
From Lemma 2 we write

$$
Q_{n}(t) \equiv \frac{1}{\pi} \sum_{k=1}^{n} a_{n, k}\left[\frac{\sin \mathrm{kt}}{\mathrm{kt}^{2}}-\frac{\cos \mathrm{kt}}{\mathrm{t}}\right]
$$

Therefore

$$
\begin{aligned}
I & =\int_{0}^{\pi} \psi(t) Q_{n}(t) d t \\
& =\left(\int_{0}^{1 / n}+\int_{1 / n}^{\delta}+\int_{\delta}^{\pi}\right) \psi(t) Q_{n}(t) d t \\
& =I_{1}+I_{2}+I_{3}, \text { say, where } 0<\delta<\pi .
\end{aligned}
$$

Now by Lemma 2 and hypothesis (4.2), we have

$$
\begin{aligned}
I_{1} & =\int_{0}^{1 / n} \psi(t) Q_{n}(t) d t \\
& =O\left(n \int_{0}^{1 / n}|\psi(t)| d t\right) \\
& =O\left(n O\left(\frac{1}{n \varepsilon(n)}\right)\right) \\
& =O\left(\frac{1}{\varepsilon(n)}\right)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
I_{1}=O(1), \text { as } n \rightarrow \infty . \tag{6.2}
\end{equation*}
$$

Again by Lemma 3,

$$
\begin{aligned}
I_{2}= & \int_{1 / n}^{\delta} \psi(t) Q_{n}(t) d t \\
= & O\left(\int_{1 / n}^{\delta}\left(|\psi(t)| \frac{A_{n, n-\tau}}{t}\right) d t\right) \\
= & O\left(\int_{1 / n}^{\delta}|\psi(t)|\left(\frac{A_{n, n \tau}}{t \varepsilon(t)} \varepsilon(t)\right) d t\right) \\
= & O\left(\Psi_{1}(t) \frac{A_{n, n-\tau}}{t}\right)_{1 / n}^{\delta} \\
& +O \int_{I / n}^{\delta} \Psi_{1}(t) \frac{d}{d t}\left(\frac{A_{n, n-\tau}}{t ~ \varepsilon(1 / t)} \varepsilon(1 / t)\right) d t \\
= & O\left(\frac{1}{\varepsilon(n)}\right)+O\left(\frac{1}{\varepsilon(n)}\right) \\
& +O(1) \int_{1 / n}^{\delta}\left(\frac{t}{\varepsilon(1 / t)} \frac{A_{n, n-\tau}}{t(1 / t)}\right) \frac{d}{d t}(\varepsilon(1 / t)) \\
& +O(1)+O(1) \int_{I / n}^{\delta} 0\left(\frac{t}{\varepsilon(1 / t)}\right) \frac{d}{d t}\left(\frac{A_{n, n-\tau}}{t \varepsilon(1 / t)}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & O\left(\frac{t}{\varepsilon(n)}\right)+O\left(\frac{t}{\varepsilon(n)}\right) \\
& +O(1) \int_{1 / n}^{\delta} \frac{\frac{d}{d t} \varepsilon(1 / t)}{(\varepsilon(1 / t))^{2}}+O(1) \int_{1 / n}^{\delta} t \frac{d}{d t} \cdot\left(\frac{A_{n, n-\tau}}{t \varepsilon(1 / t)}\right) \\
= & O\left(\frac{1}{\varepsilon(n)}\right)+O\left(\frac{1}{\varepsilon(n)}\right)+O(1)\left[\frac{1}{\varepsilon(1 / t)}\right]_{1 / n}^{\delta} \\
& \left.+O(1)\left(\left[\frac{t A_{n, n-\tau}}{t \varepsilon(1 / t)}\right]_{1 / n}^{\delta}-\int_{1 / n}^{\delta} \frac{A_{n, n}}{\varepsilon(1 / t)} d t\right)^{\delta\left(\frac{1}{\varepsilon(n)}\right.}\right)+O(1)+O(1) .
\end{aligned}
$$

By virtue of (4.3) we have

$$
\begin{equation*}
\mathrm{I}_{2}=\mathrm{O}(1), \text { as } \mathrm{n} \rightarrow \infty \tag{6.3}
\end{equation*}
$$

Since the method of summability is regular, we have

$$
\begin{equation*}
\mathrm{I}_{3}=\mathrm{O}(1), \text { as } \mathrm{n} \rightarrow \infty \tag{6.4}
\end{equation*}
$$

by Riemann-Lebesgue theorem.
Combining the above results we obtain (6.1).
This completes the proof of the theorem.

REFERENCES

[1] McFADDEN, L., Absolute Nörlund Summability, Duke Math. J. 9 (1942), 168-207.
[2] MOHANTY, R., NANDA, M., On the behaviour of Fourier coefficients, Proc. Amer. Math. Soc. 5 (1954), 79-84.
[3] NÖRLUND, N.E., Sur une application des functions permutables. Lunds Universitets Arsskrift. (2), 16 (1919), No. 3.
[4] Sharma, R.M., On a sequence of Fourier coefficient, Bull. of Cal. Math. Soc. 61 (1969), 89-93.
[5] VARSHNEY, O.P., On a sequence of Fourier coefficients, Proc. Amer. Math. Soc. (5), 10 (1959), 790-796.
[6] VORONOI, G.F., Extension of the notion of the limit of the sum of terms of an infinite series, Annals of Mathematics. 23 (1932), 422-428.
[7] TRIPATHI, L.M., SINGH, A.P., On the sequence of Fourier coefficients by $\left(N, p_{n}\right) C_{1}$ method, Bull. Cal. Math. Soc. 73 (1981), 337-344.
[8] KISHORE, N., HOTTA, G.C., On absolute matrix summability of F.S., Indian Journal of Maths. 13 (1971), 2, 99- .
[9] KHARE, S.P., TRIPATHI, V.K., On the behaviour of Fourier coefficients, Bull. Cal. Math. Soc., 80 (1988), 217-222.
[10] MITTAL, ML., On the $\|T\| . C_{1}$ summability of a sequence of Fourier coefficients., Bull. Cal. Math. Soc., 81 (1989), 25-31.

