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ABSTRACT

A family of univalent harmonic functions is studied from the point of geometric 
function theory. This class consists of mappings of the öpen unit disk onto the entire 
complex plane except for two infinite slits along the real axis with a normalization at the 
origin. Extreme points are determined, and sharp estimates for Fourier coeffidents and 
distortion theorems are given.

1. INTRODUCTION

Clunie and Sheil-Small [1] studied the class of ali harmonic.
complex-valued, sense preserving univalent mappings f defined on the 
öpen unit disk U which are normalized by f(0)=0, f^(0)=l. Such functions 
admit the representation f=h+ğ where h(z) = z+a^z^-ı-... and g{z)=b^2+b,^z^+... 
are analytic in U. f is locally one-to-one and sense preserving if and only 
if |g'(z)l < |h'(z)| for z is in U. This implies that IbJ < 1. Therefore f^ = 

(f-b^f)/(l-|b^p) is also in Sjj and one may restrict attention to the subclass
o / .Sjj = {f G Sjj: f_(0) = 0}.

z

If f = u+iv İS harmonic in U with f(0)=0, we let F and G be 
analytic in U and satisfy F(0)=G(0)=0, u=Re F and v=Re G. If we let 
h=(F+iG)/2 and g=(F-iG)/2 then h and g are analytic in U and f=h+g.

In contrast to conformal mappings, harmonic mappings are not 
essentially determined by their image domains. Therefore, it is natural to 
study the class Sjj(UT)p of harmonic, sense preserving and univalent 
mappings of U onto another domain D^=(E-(-oo,a(|)]u[b|j,,+oo) normalized by 
f(0) = 0, f_(0) = Oand f (0) = 1, where 0 is a fixed parameter (0«|XJr), 

z
and the constants a,, b, (a. < 0 < b.) are determined as in Theorem 1. If 
<))-90, our results will give those of Livingston [2].
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2. THE CLASS Sj,(UJ»$)

Let P be a class of p(z), which are analytic in U with p(0)=l 
Re p(z)>0 for z in U.

and

Lemma 1. If p(z) is in P, then, for 0«|)<7t,

-1

1
2(l+cos(j))

(1 + -^) < Re 
sin<t>

2
(1< )p(OdC

2 2
(l-2cos(|)Ç+i^)

(1)

2(l+cos())) sin<()

2(l-cos(|))
1

(1 - -^) 
sin<(>

(i-6p(C)dÇ

(l-2cos())Ç+Ç )
(2)

<
o

1

1 (2E± - 1) < Re

o

1 (Jî± + 1) 
2(l-cos(j)) sin<))

1

(2<[)-7c)cos()>-2sin<))4-7r
3

2sın (|>
< Re

(l-6p(ÖdC

I 2 2
j (l-2cos(|)^+^)

(n-2(|))cos(|)+2sin(|)+7i 
3 

2sin (j)

(3)

<

Proof. We set w=e“'’, 0«)><7t. We estimate the integrai

1-1

I = Re
(i-âp(C)dc _

'i- 1
(l-2cos<))Ç+Ç)

2
1-t
2 _ 2

(l+wt) (l+wt)
Re p(-t) dt. (4)

o o

It is well known that for -l<t<l

(l-|t|)/(l+|t|)^e p(t)<(l+|t|)/(l-ltl). (5)

Substituting (5) into (4), we obtain

1 1

o

1-t^

2 — 2 l-t 
(l+wt) (l+wt)

l±t dt < I < -
1-?

2‘ 1+t(l+wt) (l+wt)
dt.

o
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Since

log
1-e’^

1-e'^
= İ(0-7C> and log

1 ‘‘I’

İ4-e

1+e
-i<|.

= i<t> ,

ineguality (1) is readily obtained.

(2) can be proved in the same way. From (1) and (2), we have (3).

Remark. The exprcssion on the left hand side of (1) tends to -İI2 
as ())—>0^ while the expression on the right hand side of (1) tends to -1/6 
as <()—>0*. These bounds have been given by Livingston [2,Lemma 1], 
Moreover, the upper and lower bounds in (3) have a minimum for (|)=7i/2.

We now let be the class of functions f which have the form

z

f(z) = Re
2- 2

(l-2cos(l) )

p(ödC + i Im ______z 
2

l-2cos(j) z+z
(6)

o

where peP and <)) is a fixed parameter in the interval (0,7t).

Theorem 1. If fe then f is harmonic, sense preserving and 
univalent in U and f(U) is convex in the direction of the real axis with 
f(U)cD^.

Proof. Let f=h+g=Re F+iRe G. Then, we have from (6) that

z 1-c'
F(z) =

2 2
(l-2cos(|)Ç+Ç)

p(^dÇ and G(z) = -1 z 

l-2cos(|) z+z'0
2

for z in U. Since F'(z)/iG'(z)=p(z) and

g\z) _ r(z)-İG^(z) _ p(z)-l
^(zHİG'Cz) p(z)+lh'(z)

it follows that |g'(z)|<|h'(z)|. Thus, f is locally one to one and sense 
preserving. Also,
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h(z)-g(z) = iG(z) = z

l-2cos(j) z-(-z'
2

is convex in the direction of the real axis. By a theorem of Clunie and 
Sheil-Small [1, Theorem 5.3], f is univalent and f(U) is convex in the 
direction of the real axis.

Moreover, f(z) is real if and only if z is real. Since Re p(z)>0, it 
follows that f(r)=Re F(r) is increasing on (-1,1) and f(r) is bounded on 
(-1,1) by the Lemma 1 for a fixed (j), 0«îX7r. Thus, lim^f(r) and lim f(r)

r->l

exists and equals to a^jj and b(|), respectively. Thus, f(U) does not contain 
the interval (-oo,a(|^]u[b|j),oo). Therefore, f(U)cD(|,.

Theorem 2. SJUJDJc^,,

Proof. Let feSylUJDp. Since f(U)=D|j| is convex in the direction of 
real axis for a fixed (|), by the theorem, given by Clunie and Sheil-Small 
[1,Theorem 5.3], h-g=iG is univalent and convex in the direction of real 
axis.

Let h(z)=z+a2z^+... and g(z)=b2z2-t-... Then, iG(z)=h(z)-g(z)=z+... Since 

f(U)=D(|), Re G(z)=lm f(z) is 0 on the boundary of U. Since G is convex 
in the direction of the imaginary axis, it follows that G(U) is (L slit along 
two infinite rays on the real axis for (()e(0,n). Also, since iG(0)=iG(0)-l=0, 
it follows that iG(z) is a member of the class S of functions f which are 
analytic and univalent in U and normalized by f(O)=f(O)-l=O. Thus, there 
is a fixed <)), 0<(|)<Ji, such that 

iG(z) k$(z) = z

l-2cos(|) Z4-Z

where -< denotes subordination. Since k^eS, it follows that iG=k^. Hence, 
Im f(r)=Re G(r)=0 for -l<r<l.

Now, if f=h+g, then h'-g'=iG' and

h'+g' l+g2}L

h'-g' l-g'/h'

Since |g'(z)|<|h'(z)|, for z in U, it follows that
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(h'+g')/(h'-g') = p, 

where peP. Thus, h'+g'= (h'-g')p = iG'p

F(z) = h(z)+g(z) = iG'(Öp(ÖdC = ı-c'
0 I

Thus f(z)=Re F(z)+iRe G(z) belongs to 3^^.

'2- 1
(l-2cos<(>^+C)

z z

0

p(OdC .

Theorem 3. S„(UT)J=SÎ'..

Proof. Let fe 3^^ have the form (4), and let r^^ be a sequence with 
0<r]^<l and lim r]j=L Let P[j(z)=p(r|jZ), and denote by fjz) the function 
obtained from (4) by replacing p(z) with p„(z). We claim that f is in 
Sjj(UJDp. To see this, let

z

F(z) =
2 2

(l-2cos(()^+^ )
p(OdÇ .

0

There exists 8.>0, i=12, so that we may write for |z-w.|<8.

where w,=e"’’ and
1

W2=e’'’’. Then, for |z-wJ<8j,

1 1 + J- 1F (z) =
2 2

Wı-1 (Z-W2)
Pn(2)

PnC'^l) + pV^i)
(W2-l)(Z-wp

+ qı(z)

2 , 1
^2-1 (Z-Wı).

2 2
.(W2-l)(Z-Wj)'

where qj(z) is analytic in lz-W|l<8j. 
l-8.<c.<l, then, for z in D., 
11’ 1’

Let Dj={z:|z-w.|<8j}nU, i=l^. If

z

F (z) - F (c.) = F/OdC . (8)

c

where the path of integration is in D., Equation (8) gives for zeDr
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where

F (z) =
Pn(Wı)

, T. ^■"'2

+ l()g(z-w,) + q(z) ,
_(l-w^z-Wj)

oo
J Jq(z) = L ITİz-AvpJ + -b- + a log (z-wp

j=0 j=0 ^■''^2

is analytic in Dj and arg(z-Wj)G (0,n:). Thus, for zeDj, has the form

F(z) = -i- + m log(z-w,) 
Z-Wj ’

and then

Re f/z) = Re F^(z)

Re + Re(m) ln|z-w,|-Im(m)arg(z-w,)+Re q(z) 
Z-Wj ' ‘

Now, we wish to prove that f cannot have a nonreal finite cluster 
” ia. .

point at z=Wp To see this, suppose that z.=Wj+p.e is in U with p.>0 
and lim p.=0. We daim that |Re fjj(z.)|->oo as n->«>. Indeed,

-ia,

Re f (z.) =
Re(ke j)+pRe(m)ln(pj)

J'

pj
- Im(m)arg(z.-Wj>+-Re q(zp

approaches to +0° as n approaches to +°°. Similarly, we have the same 
argument for D^. Thus, f^ has no finite nonreal cluster points at z=Wj and 
z=w,. At ali other points of |z|=l, the finite cluster points of f^ are real. 
Since f (U)cD,, and 

n'- ç

lim f (r) = 
r->-l

, lim f (r) = b 
r->l0

it follows that f]^(U)=D((| for a fixed (j).

Thus, fj] is in Sjj(UJDp and hence, f is in Sjj(UJ)^. Since 3^^ is 
closed under uniform limits on compact subsets of U, it follows that 
3^,=S„(UX>T.0 0'
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3. EXTREME POİNTS OF

If peP, then it is known that

p(z) =

ini=ı

1+T|Z
1-Tlz (9)ducn),

where g is a probability measure on X={T|:|T||=1}. Thus, if f is in 3^^, 
there is a probability measure g on X such that

and

f(z) = Re

mı=ı

k/z.n) =

k$(z,Tl)dg(Tl)+iIm k$(z)

2
(1-C )(i+TiO

2 2
(l-2cos<(> ) (l-nO

(10)
z

dÇ
o

-2
__ __ "Z.

A(w,Ti)log(l-zw>ı-A(w,Ti)log(l-wz)+B(w,Ti) + 
l-wz

1_ _
B(w,T|)-------+ C(w,T|) log(l-Tlz) ; if T| w,w

l-wz

and

i
3

4sin <{)

log(^) - 
vl-v®/

COS<|)WZ iwz
2 _ 2

2sin (|)(l-wz) 2sın(j)(l-wz)
; if T| = w

,4sin <J) MS) COS())WZ

2
2sın (|)( l-wz)

2
2r|w 

(1-T|w)^(1-w5

C(w,r|) =
2

2n(i-Ti)
2 2

(1-Tiw) (1-11^

iuz

2sin(|)(l-wz)”
; if T) = w

(l+'riw)w 

(l-Tlw)(l-w^

for <|)e(O,Jt)

İ0 k / K w=e , A(w,ti) = , B(w,T|) =

9

The eztreme points of are readily obtained by making use of the 
consequence observed by Szapiel [3],
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Lemma 2. [3]. Suppose X is a convex linear Hausdorff space, O:
is homogeneous, ce <r\{0} and A is a compact convex subset of ö ’Cc). 

Let tj/:A-4R be affine continuous with Ogt|/(A) and let B={a/tır(a):ae A}. 
Then

1) B İS compact convex,

2) The map a—>a/\|/{a) is a homeomorphism of A onto B,

3) Eg={a/t|/(a);aGE^}, where Ep shows the set of ali extreme points 
of P.

Theorem 4. The extreme points of 3^ are0

f^(z)=[Re k^(z,Ti)+iIm k$(z)] , |t||=1.

Proof. We apply Lemma 2 with

(^(z) = Re j
2

(i-C )p(ö
+ Im

l-2cos()) z+z“_

z

o
2 1

(l-2cos(|) 1^+!^ )

z
0

A={Q :peP} , <I>(0=f/0)=l , c=l and v(QJ=l E r

Then is convex. The map Qp—>p is a linear homeomorphism
between A and P. Ep={(l+T|z)/(l-riz):|r||= I}. Thus, the proof of theorem is 
completed.

4. APPLICATIONS

In this section, we will use our knowledge of extreme points to 
solve some extremal problems on Sj^(U,Dp.

Theorem 5. Let f=h+g€ SylUJOp. If h(z) = z+^ 

then, for 0<(|)<Jt,

n 
az 

n
and g(z) = b^^z" ,

n
l«J s i Zk 

k=l
n-1

lc=l

|sin(k(l))| 
sin({) 

lsin(k<|>)l 
sin())

(n+l)(2n+l) 
6

(n-l)(2n-l) 
6

(11)<

<

and

(12)
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lıv ■ »>.1 sn'
|sin(n(|))| 

sin({) (13)n
< n .

Equality in (11), (12) and (13) occours for the function

f(z)=[Re k^(z,e^*'’’)+ilm k$(z)] .

Proof. İn order to prove validity of (11), (12) and (13), we will make 
use of the extreme points of Sj^(U,Dp. Let f^(z)=[Re k^(z,'n)-ı-ilm k^(z)]. 
Also, F(z)=k(|)(z,T|) and G(z)=-iz/(l-2cos(|) z-Pz^). Thus

h(z) = i [F(zHiG(z)] = i [k^(z,Tl)+k^(z)] = z+£
n=2

n 
a z 

n

and

g(z) = [F(z)-iG(z)] = i [k (z,îi)-k (z)] = z+X b
n=^

11 
► Z 
n

İf Ti^e"'*’, for w=e'*, then we have

h(z) = i
'l

-2ıiw
2

-n
W

A "ir 
iî=l

-2
2t|w

Z, -1.2^, -2.
(1-T|W ) (l-w )

Y» w
A'n=l

+ (l+^w)w 
(l-rıw)(l-w5

-n n
W Z +

Z, T. -1 
(l'+r|w )w 

(i-'nw5(i-w5

-1 2
1^1

2:
1^1

w -w
-1 

w-w

i
11=1

-n

2,

n 
Z

n
n 

Z

_(1-T|w) (l-w)

n n 
W Z

^nçıV) 
2 .

n

(l-r|w) (1-Tiw )
S —, n

n
Z +

n
n 

Z

Therefore,

a 
n
= i

2

= i 
2

= a 
n

T. 2-n
-2r|w

/«» 11-2
2t|w (l+r|w)w

1-n

2 9 -12-9
_n(l-Tlw) (l-w) (1-T|w ) (l-w ) (l-r|w)(l-w5

-1\ 11-1
(1+T|W )W 2Ti(i-Ti5n’ II 41

-1 -2 2-12
(1-T)w )(l-w ) n(l-Tlw) (l-w )

W-W
-1 

w-w

l-2r][wn-1
-W

1-n - , n -n, 2 n-fl -n-1, 2 n -1
' -2l|(w-W )+T| (w -w )+(l-T| )’l (w-W )]

-1 1 -12
n(w-w )(1-Tlw) (1-T|w )

2(w"-w”)-2t|(w”^^w” 51 

(w-w ')(1-T|w)(1-T|w 51

n-^+1 
W

2A
-nS

|gO

n-2k
W -Tl -PT|

n+2 n-2k+l 
W

ıı-2k^ 

feO 'fcO

”■1 Tl »

w

n

n

+

+

n ' n

In
+ —

2 -i
(1-T|W) (1-T1W ‘) T|(1-T|W)(1-T|W^)T 2
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= i 
n

k=l

k+1
(wn-k

+w
k-ı n-1 

")-nS 
k=l

ıt2k
W ■

fel

n-2k+l 
W -nnS

k=0

n-2k 
W

n

(1-T^W)(1-T|W')

1 r n-1 n-2 -1 n-3 2 -2
= +2r| (w+w )i-3t| (w +w +1)+ ...+

, n-1 1-n n-3 3-n «.1
+n(w +w +w +w +...+A)j

where X=w+w'‘ if n is even, X=1 if n is odd. And so for n=2,3,...

a 
n = (w+w ) 2, (n-k)n (w -w ) =

" k=0

n-™
2^ m T) sınfmç). 

n sin()) nı=ı
1

Thus,

Kİn'
1

n
T-, m|sin(ın()))| 

n sin<t) m=ı
< (n+I)(2n+I)

6

with equality for 'q=e*"*’.

Similarly, for n=2,3,.,., we have

ı_ 1 z ’ü’' n-k k-n^
'’n = n (w -W ) =

ksl

1
n sin<{)

■V • / zk\2^ m T| sın(m<[)) 
m=l

from which

I 
n sintj)

n-1
\ m|sin(m()))| <
n^l

(n-l)(2n-l) 
6

with equality for Tl=e“*.

Remark. If <j)-40, our results in the Theorem 5 give those of 
Livingston [2, Theorem 5].

Theorem 6. If f=h+g is in Sj,(UJDp, then

|f (z)l S
1 

ı+|z|
5 

(1-lzl)

and |f-(z)l z

2
|z| (1+lzl)

5
(1-lzl)

(14)
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Equality in (14) occurs for the functions

f(z)=[Re k^(z,e“^)+nm k$(z)]

Proof. We need only to consider extreme points f^(z). In this case 
for Tiî^e’*, w=e‘'*’, it is conciuded that

h(z) = i [k^(z,tı)+k^(z)]

= i A(w,r|)log(]-w'z>ı-A(w\T))log(l-wz)+B(w,T|)
2

-2 
W Z 

l-w’z
1

-1 w z+ B(w ,1)) —7+C(w,T|)log(l-'nz)+ 
l-wz

z
-1. 2

l-(w+w )z+z”_

After having straightfonvard computations, we have

h'(z) =
l-z^

-12 2
(l-w z) (l-wz) (l-Tlz)

and

ih'(z)| =
l-z^

-12 2
(l-w z) (l-wz) (1-T|z)

|h'(z)| < -j- 
l-|z|

l-z“
1 2 

(l-w z) (l-wzy
2

2 
l+|z|

5 
(l-|z|)

Sûnilarly, for we obtain

g(z) = [k$(z,T|)-k0(z)] . g'(z) =
z(1-z5t1

-12 2
(l-w z) (l-wz) (1-Tlz)

and

l-|z|

z(l-z5

1
(l-w z) (l-wz)

2
<

2
|Z| (1+|Z|)

5
(1-lzl)
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