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ABSTRACT

Let X be a connected and locally path connected topological space. Constructing the
sheaf H of higher homotopy groups on X, its some characterizations are examined. Also, it
is shown that H is a regular covering space as a sheaf of abelian groups. Finally, it is
given “General Llfung Theorem” for the sheaf H and constructing the Quotient Sheaf Q
for any group subsheaf H' of the sheaf H X it is' shown that Q is a covering space as R
sheaf of abelian groups. o

1. INTRODUCTION

Let X be a connected and locally path connected topological space.
Then, X is a path connected. For an arbitrary fixed point ¢ € X, we will
consider X as a pointed topological space (X, c) unless otherwise stated.
Let x be any point of X and nn(X, x) be higher homotopy groups of X
with respect to x and

H = XXX T (X, X) .

Clearly, H’J is a set over X and the mapping ¥: H — X defined by ¥
(O'X) = x for any C € (Hn)x c Hu, is an onto projection.

We introduce on Hll a natural topology as follows: Let X, an
arbitrary fixed point of X, W = W(xo) be a path connected open
neighborhood of X, and ch = [a]xO be a homotopy class of (Hu)xO. Since
X path connected, there exists a path y with initial point X, and with
terminal point x, for cvery x € W. Therefore, the path y determines an
isomorphism y* :(Hn)xO — (H)_defined by 'y*([(x]xO) = [B]X for any [(x]xc
€ (Hn)xo c Hn. Let us now define a mapping s : W — Hn such that
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s(x):y*([oa]xO) = [B]X for every x € W. If ¢ € W, then we define s(c) =
'r“([(x]) = [OL] by taking [y] = [1] € (H) It is seen that, the mapping
s dcpends on both the homotopy classes [OL] and [y]. Supposc that the
homotopy class [y] is choosen as arbitrary ﬁxcd for each x € W. So,
the mapping s depends on only the homotopy class [oc]xO. s is
well-defined and Wos = lw' Let us denote the totality of the mapping s
defined over W by I'(W, Hn).

Let B a basis of path conneted open neighborhoods for each x € X.
Then,

={s(W): We B,s e (W, Hn)}

is a topology - base on Hn[4, 10]. In this topology the mapping ¥ and s
are continuous. Moreover W is a local topological mapping and the
mapping s is a local invers of ¥. Because;

1. Let 6 € H Then ‘I’(GXO) X, € X.If W= W(x) is an open
set, then W = 91 W where each W € B. So, for each W there exists

a mapping s, : Wi — H_such that ‘Posi =1, and s(W) e T.

Let us now define a mapping s : W — Hn such that SIWi =s, for
each Wi. Thus

SW) = I s,(W)

is an open set in H and Wos = 1_. Write s(W) = U. Since Wos = 1
so¥ = 1 , then ‘PlU U->Wis bl_]ecthC and (‘PIU)

w’

2. The topologies on U and W arc subspacc topologies obtained
from H and X, respectively. Let W’ < W be an open set. It can be
written that

W =1U W'
i€l
such that W'i = W’i N W’ for any i € L. Now, if we define a mapping
s W, - U
1 1

such that s'i = silw’i, for each W'i, then we can define a mapping
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s W U
such that s'|W'i = s'i. So,
SW) = g §W) c U

is an open set. Hence W|U is a continuous mapping. On the other hand,
if U < U is an open set, then

U= G V)
Hence
YUY=UW cW
iel 1
is an open set. Thus, the mapping s : W — U is continuous.

Therefore (Hn, ¥) is a sheaf over X. It is called “the sheaf of
higher homotopy groups” [6]. s is called a section over W and the set of
totality of sections over W is ['(W, Hn). The (Hn)x = nn(X, x) is called
the stalk of the sheaf Hn for any x € X. The group (Hn)x=1tn(X,x),n> 1,
is commutative for every x € X. The set T'(W, Hn) is a group with
pointwise multiplication operation. Thus, the operation.: Hn @ Hn - Hu is
continuous for cvery stalk of H11 [1]. Hence, Hn is a sheaf of abelian
groups.

2. CHARACTERISTIC FEATURES OF Hn 31

* Every section over an open set W can be extended to a section
over X. In other words, the sections over W are the restrictions of the
sections over X, ie., I'(W, Hn) = I'(s|W, Hn), s € I'(X, Hn). A section
over X is called a global section.

* All of the stalks of the sheaf Hn over X are isomorphic.

*Let W <« X be an open set and S;» 8, be any two sections in
rw, H“). If S1(Xo) = s2(x0) for any x, € W, then sl(x) = sz(x) for each
x € W.

*Let W, W, c X be any two open sctsinX,WlﬁwziQiand
5, € I“(Wl,Hu), s, € I‘(Wz,Hn). If sl(xo) = 52(x0) for any X, € W1 N Wz’
then sl(x) = s2(x), for every x € W1 N W2.
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3. THE SHEAF H AS A COVERING SPACE
Now, we shall prove that, H_is a regular covering space of X.

Theorem 3.1. Let Hn be the sheaf of abelian groups over (X, c¢) and
W be an open set in X. Then

(Hn)c = T'(W, Hn).

Proof. Let W — X be an open set and s € T'(W, Hn). Then, there
exists a unique element G, = [ot]c C (Hn)c such that

s(x) = (ol = [B]_

for every x € W. That is, to each clement of (Hn)c, there correspondence

only one element in I'(W, Hn). Let us denote this correspondence by & :

(Hn)c — I'(W, Hn) such that CIJ(GC) = s for any c, € (Hn)c. Let ccl =
2 _ 1 2 . b

[al]c, ¢’ = [0.2]c € (Hn)c and G, O, determine the sections .8, €

I'(W, Hn), respectively. Then

5,00 = v*(o,]) = [B,]_
and
5,0 = v(0,]) = [B]_

for every x € W. Then sl(x) ES sz(x), if ocl #* 602. So @ is one to one.
As a result of the definition of @, & is onto. Thus @ is a bijection.

® is a homomorphism. Because, if Gcl = [al]c, 002 = [(Xz]c € (Hn)c,
then ocl.ocz = [oclaz]c. So the element cscl.csc2 € (Hn)C defines a section
s € T(W, Hn) such that

s®) = (5,3)(® = ¥, @]) = [B B,
for every x € W. On the other hand for every x € W,

s,(X).s,(x) = v*([o 1)-v*([0,])
= 7o ] [o,])
= v*(lor.00])
= BB, -
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Thus
2 _ 1 2
@6, .0) =55, =BG ) DO))
Therefore, @ is an isomorphism.

We can state as a results of Theorem 3.1. that, the stalk (Hu)c
completely determines the group of sections over W. In particular, if we
take W = X, then the stalk (Hn)c completely determines the group of
global sections over X.

Now we can state the following corollary [2].

Corollary. Let Hu be the sheaf of abelian groups over X. (Hn)x be
the stalk over the point x € X and W. = W(x) be an open set. Then,
(Hu)x = I'(W, Hn). Particularly, (Hu)x = I'X, Hn).

According to this corollary, we can say that, if c, € (Hn)x is any
clement and W = W(x) is an open set in X, then there is a unique
section s € T(W, H“) such that s(x) = . Since

Wis(W) : s(W) > W

is a topological mapping and s = (PIs(W)) ",
¥I(W) =V s(W), s, € I(W, H)

and
lI’Isi(W) : si(W) - W

is a topological mapping. So, the open set W = W(x) is evenly covered
by W. Thus ¥ is a covering projection and (Hn, ¥) is a covering space
of X [7.8.9]. Moreover, (Hn, ¥) is an abelian covering space of X.

Now, let X, € X be any point and y be an arc with initial point X0
Then, the mapping

so’y:I——>Hn

is a continuous mapping and ¥ o (soy) = V. If we write (soy)(xo) = prE

(Hn)xO, then soy is a lifting of vy from the initial point px0 over X, in Hn.
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Write soy = +y*, then ¥* is unique, because the mapping ¥|s(X)
s(X) —» X is a homeomorphism.

We can then state the following theorem.

Theorem 3.2. Let (Hn, ¥) be the sheaf of abelian groups over X, X,
€ X be any point and Y be a path with initial point X, in X. Then, ¥
has a unique lifting y* with initial point pr in Hn, for pr € (Hn)xO.

Now, we give the following theorem.

Theorem 3.3. (Monodromy). Let (Hn, ¥) be the sheaf of abelian
groups over X and suppose that Y, * and y * are paths with common
initial point pXo and terminal point p_in H_. Then, y* and v* are
homotopic path in H if and only if "I’oy * and ‘I’oy * are homotoplc
paths in X.

Proof. If 71* is homotopic to 72* by a homotopy G, then WoG is a
homotopy between ‘Po'yl* and ‘Po’yz*. For a proof of the other half of the
theorem, let X, and X denote the common initial point and common
terminal point ‘Po’yl* and ‘I’oq2*, respectively. Let H : 1 x J — X be a
homotopy between ‘I’o'yl* and \Poyz*. On the other hand, if p € (Hn),
then there is a unique section s € I'(X, Hn) such that s(xo) = pr. So,

so(¥oy *) = y*
and

*) —

so(Yoy,*) = v.*

Furthermore, soH is a homotopy between ¥ and yz*.

Theorem 34. Let (Hn, ¥) be the sheaf of abelian groups over X, X,

€ X be an arbitrary fixed point and pr € (Hn) be any point. Then the
fundamental group of H“ with respect to pr is isomorphic to (HB)XO.

From theorems 3.3. and 3.4, (Hn, ¥) is a regular covering space of
X.

Now, we give “General Lifting Theorem” for the sheaf Hn.

Theorem 3.5, Let X = (X, xO), Y = (Y, yo) be two connected and
locally path connected topological space (or two Riemann spaces), (Hn, ¥)
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be the shcaf of abelian groups over the pointed topological space (X, x ) '
p e ¥ (x) be any point. If

f:(, yo) - X, xo)

be any continuous mapping, then f can be lifted to a unique continuous
AR

such that Wof = f*.

Proof. Let f : (Y, yo) - X, x) be a continuous mapping. Then
f(yo) = X, Hp e ! (x,) any point, then there exists a unique section
s e T(X, Hn) such that s(x) pr Thus

sof : (Y, y) = H, PXO)
is a continuous mapping and
Wo(sof) = f

So, sof is a lifting of f to Hn. Let us denote sof by f*. f* is
unique, because the section s is unique.

We can now state the following theorem.

Theorem 3.6. Let X = (X, xo), Y = (Y, yo) be two connected and
locally path connected topological space (or two Riemann Surfaces), (Hn,
W) be the sheaf of abelian groups over the pointed topological space (X,
X)) px0 € ‘I"I(xo) be any point and

Pogr: (Yoy) > Hp)
be any two continuous mappings such that Wof* = Wog*, then
f* = g¥ |

Proof. This is a result of Theorem 3.5.

4. SUBSHEAVES AND QUOTIENT SHEAVES OF H.

In this section, Constructing the Quotient sheaf QH, ,

of the groups H’ of the sheaf H " it is shown that Q " is covering space
as a sheaf of abcllan groups.

for any subsheaf
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We begin by giving the following definition [5].

Definition 4.1. Let H be the sheaf of abelian groups over X and
H'n < H_ be an open set. Then H'n is called a subsheaf of the sheaf H
of abelian groups, if

i) ‘P(H'n) =X

ii) For each point x € X, the stalk (H'“)x is a subgroup of (Hn)x.

We now give the following theorem.

Theorem 4.1. (Existence Theorem). Let X = (X, ¢) be a connected,
locally path connected topological space and (Hn)cbc higher homotopy
group with respect to ¢ € X. Then each subset (H'n)C of (Hn)c determines
a sheaf over X.

As a result of Theorem 4.1.,

1. If (H’n)c = (Hn)c, it is obtained that H'n = Hn. So, the sheaves H',1
are subsheaves of Hn. Also, ¥ = ‘PIH'H.

2. If (Hn,)c . (Hn2)c are any two subset of (H “)c and (H nl)c c
(H’ ) then
n2 C
H cH .
n ny

Furthermore, if W < X is an open set, then
W, H ) ¢ I'(W, H’n) c I'(W, Hn).
n; 2

3. Let H'n be a subsheaf of the sheaf Hn of abelian groups and W
< X be an open set. Then I'(W, H'n) is a subgroup of I'(W, Hn). If we
take W = X, then I'(X, H'n) is a subgroup of I'(X, Hn).

Now, we give the following definition.

Definition 42, Let H be the sheaf of abelian groups over X and
H’n CH_ be a subsheaf of abelian groups. Let us associate the set

M,, = T(W, H)T(W, H )
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with the open set W, for each W < X open. Then, the system {X, MW,
Y v} is a pre-sheaf [4]. The sheaf defined by the pre-sheaf {X, Mw’
Yw V} is called Quotient sheaf and it is denoted by Q_, .

Theorem 4.2. Let H_be the sheaf of abelian groups over X and H'n
c H be a subsheaf of abelian groups. Then, the Quotient sheaf Q, is a
sheaf of abelian groups over X. '

Proof. Let H be the sheaf of abelian groups over X and H’n cH
be a subsheaf of abelian groups. Also, H’u is a normal subsheaf of the
sheaf Hn. So, I'(X, H'n) cI'X, Hn) is a normal subgroup and I'(X, Hn)/(X, H'n)
is a group. Let

QH’n = XYX (QH,II)X
and

(QH, )x = {(W, [s])x :WcX is an open set, [s] € ['(X, Hn)/l“ X, H'n)}.

So, the operation defined in each stalk (QH,) in the form of (W, [s ])
(W.,[s ]) = (W, [sl,sz]) is well defined. It 1s easily seen that each stalk
(Q ) is an abelian group with this operation for every x € X. Since
(QH,) =I'(X, Q ) I'X, Q ,n) is an abelian group. Thus, QH,n is a sheaf of
abelian groups,

Moreover, Q , is a covering space as a sheaf of abelian groups.

4

. . 3 .
Also, it is a regular covering space.

Theorem 4.3. Let H be the sheaf of abelian groups over X, H' c
H be a subshcaf of abehan groups and Q be quotient sheaf. Then thc
group I'X, Q ) is isomorphic to the quom:nt group I'(X, H )/1" X, H’)

Proof. To prove this theorem let us define the mapping

vy : I'X, Hn)/l"(X, H’n) - I'X, QH,)
in the form of Y([s]) = y[s], where y representes inductive limit [4]. If ¥([s])
= 1, then ¥{s] = 1 and so, Y{s](x) = (X, [e])x, for any x € X. That is

W, [sD_ = (W, [e]), -
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(s} = [e] .

Hence, v is one to one. Clearly v is onto. Now, if [sl], [sz] e I'X, Hﬂ)
(X, H’n) are any two elements, then

¥ JIs,) = As,.

Thus, ¥ is a homomorphism.

Therefore, v : I'(X, Hn)/l" X, H'n) - I'(X, QH,) is an isomorphism.
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