Commun. Fac. Sci. Univ. Ank. Series Al
V. 46. pp. 143-152 (1997)

ON DEFORMATIONS PRODUCT
M. BELTAGY* and N. ABDEL-MOTTALEB**

*  Department of Mathematics, Faculty of Science, Tanta University, Tanta, EGYPT
** Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, EGYPT

(Received June 16, 1997; Accepted Oct. 27, 1997)

ABSTRACT

The product of deformations in Riemannian manifolds is defined. The product of
infinitesimal isometric deformations (IID) is considered and some results of submanifolds of
codimension > 2 are established. We also study the second fundamental form on the product
manifold and prove that the product M x M2 of two hypersurfaces M, < M and M, cM
where M is a Riemannian manifold, 1 = 1, 2, with a normal IID is a tolally geodes1c
submanifold of M x M.

1. INTRODUCTION
1.1. Deformations of submanifolds

Goldstein and Ryan [1], formulated the theory of infinitesimal
isometric deformations for submanifolds in a general Riemannian manifold.
They defined infinitesimal rigid submanifolds of Riemannian manifolds and
then specialized to the case of Euclidean spaces to obtain some results
concerning  infinitesimal rigidity of hyperspheres as dealing with
submanifolds of arbitrary codimension is complicated.

Consider a submanifold S = (Myg), where 1 M — M is an
immersion into a Riemannian manifold (M, ())) [1]. Let I = [-8,8] c R,
for some & > 0, then a map

vyIxM—->M (L.D)

is said to be a deformation of S if y, = r and Y, is an immersion for
cach t € I Note that we write y(tx) = v(x) and y(M) = M, In this
way, each vy, induces a Riemannian metric g on M. The map v is said to
be an isometric deformation (ID) of S if g = g, for each t € I and to
be an infinitesimal isometric deformation (IID) of S if g’'(0) = 0. In [1],
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the vector field z associated with a deformation is defined so as to
determine the infinitesimal properties of the deformation 7y. (See the
interesting examples given in [1]).

Goldstein and Ryan established in [1] the main theorem about the
characterization of -infinitesimal isometric deformations as follows:

Theorem 1.1. A deformation y is an IID if and only if for XY
vector fields of M,

(V2Y) + (X,Vy2) = 0, 12)
where V is the Riemannian connection of M.

To study the rigidity of the sphere, Goldstein and Ryan defined a
trivial IID to be the one whose deformation field z coincides with that of
a deformation induced by a curve ¢(t) in I(M), the group of isometries of
M. They also proved that a deformation of a submanifold of E™! is
trivial if and only if z = ar(x) + b for every x € M, for some
skew-symmetric matrix a and some constant vector b.

Finally they defined a submanifold S = (M) to be infinitesimally
rigid (IR) if all IID are trivial. Hence they proved that the standard
sphere of radius R in E™! is infinitesimally rigid as a hypersurface.

In this paper, we define deformations product and hence we get
more room to deal with submanifolds of higher codimensions. In
particular, we show that the product S x S™ < E™™?2 of the unit
spheres S c E™' and S® < E™!, is infinitesimally rigid as a
submanifold of codimension 2 in E*™*2,

1.2, Manifolds product

Cartesian product of manifolds is a constructive method for using
known manifolds as building blocks to form more manifolds. Pandey, [4],
studied the Cartesian product M = M, X M, of two Riemannian
manifolds M, and M, where the Riemannian metric G of M is given by

GXY) = ¢'(X,.Y)) + gX(X,.Y) (1.3)
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where X = X, X), Y = ‘(YI,YZ) and X,Y. are vector fields on M,
i = 12 and ¢ is the Ricmannian metric of M, for i = 1, 2. The
connection V is M is taken to be
1 2
VXY = (VX1Y1 , szYz) ) (1.4)

where V' is the Riemannian connection on Mi, i=12.

Note that vector fields and forms on the cartesian product M=M,xM,
of manifolds have a special behavior as we explain below. If A e R,

then we put
where Xi is a vector field on Mi, i=1,2. If o« € R? where

o = (o,0,) then we take

oX = (@, 0,)X X)) = (0, X,0,X)). (1.6)
If f: M, x M, - R, then we take

Xf = X X)f = X,f + Xf. %)

To compute X,f we consider the second variable X, in f(x;;x,) as a
constant. If f: M, > R,i=1,2and f: M, x M, = R? is defined as
f(x,x,) = (fl(xl)’fZ(XZ))’ then we take

Xf = X XU f) = X f.X,f) (1.8)
and
X = (. )X X) = (fX,.f,X,). 1.9

We also have X, f, =0 and X,f, = 0. Notice that for a general function
fi M} xM, > R, the term fX is not defined. If w, is a 1-form on M,
i =1, 2, we define an associated R-valued 1-form ® on M, x M, by

oX,.X,) = 0,(X)) + 0 X). (1.10)
We also define an associated R2-valued 1-form Q on M, x M, by

QX) = X, X,) = (©,K)0,X,)). (L11)
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If 0 is a 2-form on Mi, i =1, 2, we define an associated R-valued
2-form ® on M, X M, by

(X, XY ,.Y)) = 0,(X,.Y) + 0,(X,.Y,). (1.12)

(The metric G on M, X M, is defined in this sense). Finally, we define
an associated RZ-valued 2-form Q on M, x M, as follows

QX X)AY,Y) = (0,X,.Y)),0,(X,.Y). (1.13)

Using the pervious information about vector fields and forms, it is easy
to see that the connection V defined by (1.4) on M = M, X M, is a
Riemannian connection.

1.3. Second fundamental form of M1 X M2 c 1\7[1 X ﬁz

We define the second fundamental form of the immersion r on the
product manifold M =_M1 X M, as follows: Let r; M, -2 Mi IE the
immersion of Mi into Mi, fori=1, 2. Let r: M1 X M2 - M1 X M2 be
the immersion of the product manifold defined as

r(x, X)) = (r,(x)1,(x,) (1.19)

where x, € M, for i = 1,2. Let the Riemannian connection on 1\_/I=1\_/I_1><I\_/I2
constructed according to equation (1.4) be denoted by V. Define

BX,Y) = V-Y - V.Y, (1.15)

where V is the induced connection on M, x M,, and for local vector
fields X, Y on M, and X, Y local extensions to M. Using equation (1.4)
we have

1 _ -2 _ 1 2
BXY) = (VEIYI , VQZYZ) - (VXIYI , VX2Y2)

(—1 - 1 =2 _ 2
= VilYl - VX1Y1 ’ VizYz - szYz)
1 2
- (Bxy)  Bx,Y) (116)

where B!, B? are the bilinear, symmetric mappings given by

i = - i
BK.Y) = Vg¥, - V, Y, . (1.17)
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for i = 1, 2. It is easy to show that the map B(X,Y) is bilinear and
symmetric. We now define the second fundamental formofratp e M, xM,
along the normal vector 1 as

I (X) = H (XX), (1.18)
where
H (X)) = G (BX.)n)
(@'ex,x)° )
G \(B X,Y)B (X,Y,)mm,)
= ¢ B, Y)n) + £ BE,Y)n,).
1 2
= Hnl X,.Y) + an X,.Y,). (1.19)

Hence the second fundamental form of r is the sum of the second
{undamental forms of L, i=1, 2, ie,

1 2
H Tl(X,Y) = H“1 X,,Y) + an X,Y,), (1.20)
where 1, is a normal vector on M,i=12.

So if we have M, totally geodesic submanifold of M—i for i =1, 2,
then the product manifold M = M, x M, is totally geodesic in M, x M,
as well. If M = M, x M, is totally geodesic then

1 2
H (XX) = 0 = H (X)) +H, (,X,)

and since H;] (X, X)) is independent of Hfb (X,X,) then each should be zero
as well, hence each M,, i = 1, 2, will be totally geodesic. This proves
that

Proposition 1.2. Let M, and M, be two submanifolds of M, and
M,, respectively. Then M, x M, is totally geodesic if and only if M, is
totally geodesic for i = 1, 2.

2. MAIN RESULTS

We now introduce what we mean by deformations product. Let M,,
M2 be two immersed submanifolds of Ml, M2, respectively, with
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immersions L Mi - ﬁi, i =1 2. Let ‘y‘ I x M]. —> _1\71i be a
deformation of Mi, i =1, 2. Then a deformation of the product manifold
M, x M, is a map

T Ix (M, x M) > M, x M, Q.1
where

YEX, X)) = V(X X,)
(X)) V(LX)
(vﬂxpﬁﬁxg) (22)

such that ¥, = r where r is an immersion of M, X M, into M, X M,
defined by equation (1.14), and v, is an immersion for each t € I It is
clear from the last equation (2.2) that the deformation of the product
M, x M, as an immersed submanifold of M X M may be expressed as
a.product of two deformations of each component. Smce each immersion
Y: induces a Riemannian metric gi on Mi, i =1, 2, then it is easy to
see that y, will induce a metric G, on the product manifold defined by

1 2
G =g +g . 2.3)

Following Goldstein and Ryan [1], we define a deformation yof M, x M,
to be an isometric deformation (ID) of M, xM, if G, = G, for all t € L
A deformation product y of M, X M, is said to be an infinitesimal
isometric deformation (IID) if G’tlt o = 0. We now introduce the first
result we have

Theorem 2.1. Let y be a deformation of M, x M,. Then v is an
IID if and only if each of its components is an IID.

Proof. Let ¥, i = 1, 2, be IID. Then by definition, gi go + o(t)
for i =1, 2, ie., gt is of second order in the deformation parameter
Since G, on the product manifold M, XM, at t is of the form G = gt + gt,
then we have

G,=g +0(t) + g.+o(t)

=g +gl + o), 24)
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ie, G, is of second order in the deformation parameter and so the
deformation Y on M, X M, is an IID.

On the other hand, if 'y on M1 X M2 is an IID then Gt =G, + o(tz).
In particular, we have G((X,0)(Y 0))=g/(X.Y,) which implies that g, =g,
+ o(®) and s0 v is an IID. Similarly, G ((0,X,),(0,Y,))=£,(X,Y,) which in
turn implies that gt2= gg + o(tz). Consequently, ¥ is an IID.

So far we were dealing with the metric G, of the deformation 7.
Now when it comes to considering the associated field z, we will have to
deal with the connection on the product manifold ﬁl X Mz and apply the
theorem of Goldstein and Ryan.

Introducing the deformation field z = (z,z,) of y we can give a
second proof to the previous result in the following way.

Suppose y is an IID, this is equivalent to saying that for vector
fields X = (X .)X,) and Y = (Y,,Y,) on M, xM, and for a deformation
field z = (z;z,) along M, X M,,

G(V,2.Y) + GX.Vy2) = 0. 25)
By definitions (1.3) of G and (14) of V we have,

15t = Lo o 2, =

g (Vxlzx’Yl) +g (VX222,Y2) +g (XI’VYIZI) + g (XZ’VYzzz) = 0. (2.6)

Since each metric g' is independent of the other then

{ = .

g(Vyz,Y) + gXVyz) =0, i=1,2 @7
So we conclude that each yi, i=1, 2, is an IID. Now we want to show
that if each ¥ is an IID, then y is an IID as well. Since ¥ is an IID the
L . _d
gl(VX.zi,Yi) + gl(Xl,VY.zi) =0, 1i=1, 2.Hence

—1

GV,2Y) + GX.Vy2) = g (V

2__2
Xlzl’Yl) +g (szz*z’Yz)

+

I 2 =2
gX,Vyz) + £ 0V, )
0
which implies that y is an IID.

(28)
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Theorem 22. Let S", S™ be the standart hyperspheres in E™! and
E™!, respectively. Then the product S® x S™ is an infinitesimally rigid
submanifold of codimension 2 in E™™*2,

Proof. To show that S" x S™ is infinitesimally rigid, we taken an
IID field z = (zl,zz) on S" x S™ and prove that it is trivial. Since z =
(z;z)) is an 1ID field along S" x S™ then Theorem (2.1) guarantees that
each z, i = 1, 2 is an IID field as well. Since S" is infinitesimally rigid
[1] in E™! then z, is a trivial IID field. Also for ST, z, is a trivial 1ID
field, By [1], we may consider each z, for i = 1, 2, in the form

z, = ar, + bi, 2.9)

where a is a skew-symmetric matrix and b, is some constant vector. So
if we can write z in this form, i.e., z = Ar + B, then the proof will be
complete. Since

z = (z,2)

=(@r +b , ar, +b) (2.10)

then we can write z in the form,

2= A0 0|4 b (2.11)
0alr b, )

As each a is skew-symmetric, then

a-[30]- & 0

0 a 0 —at2
0 ' t
=_[;1 azJ = _ A", 2.12)

Hence A is skew-symmetric. So we conclude that the IID field
z = (z,,z,) is trivial and hence S" X S™ is infinitesimally rigid.

Remark 23. In the previous theorem, we have taken an arbitrary
IID field to show that it is trivial. Note that we can identify any
deformation of M, X M, in the Riemannian manifold l\_/Il X Mz with the
deformation product by using the projection maps n, and ®, onto the
manifolds M, and M,, respectively.
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Remark 2.4. The previous theorem shows that we may discuss the
infinitesimal rigidity problem of submanifolds with codimension 2 without
complexification of manifolds under consideration. Considering the
Cartesian product of more than two manifolds we may obtain similar
results about submanifolds of arbitrary codimension.

Theorem }_.5. IfM=M x M, is a submanifold of the Cartesian
product M = M, X M, of two Riemannian manifolds M, and M,, with
each M, ¢ M, a hypersurface, and z = (z,.2,) is a normal IID of M,
then M is a totally geodesic submanifold of M.

Proof. For any vector fileds X, Y in M, we have
G(V,2,Y) + GX.Vy2) = 0. 2.13)

As z is a normal vector field of M we may write z = fN where
N = (NN, and N, is a unit normal field along M, ¢ M,, i = 1, 2, and
f = (f,f,) is any R?-valued function on M. Then we have

G(V,fN.Y) + GX.V,fN)

G(V,2Y) + G(X,V,2)

-1 |
g (Vx FNLY) + 8'C.Vy £iN)

+-

2= S
g (szf Ny + 8 (Xz’VYzf N
2
2 Hy (X, Y + 20 H K ¥) = 0. 14)
From equation (2.14), as . (X.,Y)) is independent of 2 Y ) we conclude
ot A 2

. , )
that H (X,Y) = 0, i = 12. Since HX.Y) = Hy (X,.Y) + Hy (X,)Y)). then

we have that HN(X,Y) = 0 for every normal field N on M. Hence M is
totally geodesic.
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