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1. INTRODUCTION

In 1997, Caldas [1] has introduced a new seperation axiom sc:mi-Dl
which is situated between semi-T0 and semi-T1 due to Maheshwari and
Prasad [5]. In 1996, Hatir, Noiri and Yiiksel [2] defined C-sets and
C-continuity in topological spaces to obtain a decomposition of continuity.
Quite recently, Jafari [3] has used the C-sets to define and investigate
C-T, spaces, C-compact spaces and C-connected spaces. In this paper, we
define cD-sets as the difference set of C-scts and use these sets to define
C-Dl-spaces, cD-compact spaces and cD-connected spaces. We also
investigate the relationship between these spaces and C-continuity (or
C-irresoluteness).

2. PRELIMINARIES

Throughout this paper X and Y denote topological spaces on which
no seperation axiom is assumed. Let A be a subset of a space X. The
closure of A and the interior of A are denoted by CI(A) and Int(A),
respectively.

We shall recall some definitions used in the sequel.
Definition 2.1. A subset A of a space X is said to be

(a) semi-open [4] if A c Cl(Int(A)),
(b) a*-set [2] if Int(Cl(Int(A))) = Int(A),
(¢) C-set [2] if A = O N F, where O is open and F is an o*-set.
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Remark 2.1. Semi-open sets and C-sets are independent. A set {a, b}
in [2, Example 3.1] is a C-set but it is not semi-open. A set {a, b} in
Example 3.1 (below) is semi-open but it is not a C-set.

Definition 2.2. A function X — Y is said to be C-continuous [2]
(resp. semi-continuous [4]) for each open set V of Y, fl(V) is a C-set
(resp. semi-open in X.

3. CD X SPACES

Definition 3.1. A subset S of a space X is called a c-difference
(briefly cD-set) (resp. D-set [6], sD-set [1]) if there exist two C-sets
(resp. open sets, semi-open sets) 01’ O2 in X such that 01 # X and S =
01\02.

Remark 3.1. Every proper C-set is a cD-set, but the converse is
false as the following example shows.

Example 3.1. Let X = {a, b, C, d} and T = {@, X, {a}y (a9 d}9 {Ay b9 d}’
{a, ¢, d}}. Then {a, b} is a cD-set but it is not a C-set.

Definition 3.2. A topological space X is C-D, (resp. C-D) if for x,
y € X such that x # y there exists a cD-set of X containing x but not y
or (resp. and) a cD-set containing y but not x.

A topological space X is C-T0 (resp. C-Tl) if for x, y € X such
that x # y there exists a C-set of X containing x but not y or (resp.
and) a C-set containing y but not x.

Definition 3.3. A topological space X is C-D2 (resp. C—T2 (3] if for
X, y € X such that x # y there exist disjoint cD-sets (resp. C-sets) S,
and S2 such that x € S1 and y € S1'

Remark 3.2. The following implications hold:

a) If X is Ti, then X is C-Ti, fori =0, 1, 2.
b) If X is C-Ti, then X is C-Di, fori=0,1, 2.
¢c)If X is C—Di, then X is C-DH, fori=1,2.
d) If Xis C-Ti, then X is C-TH, fori=1, 2.
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Theorem 3.1. A topological space X is C-DO if and only if it is

C-TO.

Proof. The sufficiency is Remark 3.2 (b).

Necessity: Let X be C-D,. Then for each pair of distinct points x, y
€ X, at least one of x, y, say x, belongs to a c¢D-set S but y ¢ S. Let
S e 01\02, where O # X and 0, and O2 are C-sets. Then X € O and
for y ¢ S we have two cases:

(l)yEOl;(Z)yeolandye O2

In case (1): Ol contains X but doesn’t contain y.
In case (2): O2 contains y but doesn’t contain x. Thus X is C-TO.

Theorem 3.2. If a topological space X is C-Dl, then it is C-T .
Proof. This follows from Remark 3.2 and Theorem 3.1.

Theorem 3.3. If £ X — Y is a semi-continuous (resp. C-continuous
surjection and S is a D-set in Y, then f ! (S) is a sD-set (resp. cD-Set)
in X

Proof. We prove only the first case being the second similar. Let S
be a D-set of Y. Then there arc open sets O, and O, in Y such that

O\O and O # Y. By the semi- contmulty of f, f (O) and f' (O)
are scml-open in X Since O1 # Y and f is surjective, we havc f! (0)
X. Hence (S) f! (01)\f (02) is a sD-set.

A space X is said to be semi-D1 [1] if for any pair of distinct
points x and y of X, there exist sD-sets U and V of X such that x € U,
ye U xe¢ Vandy e V.

Theorem 34. If y is a Dl-spacc and f : X = Y a is
semi-continuous (resp. C-continuous) bijection, then X is a scmi-D1 (resp.
C'D1) space.

Proof. We prove only the first case being the second is analogous.
Suppose that Y is a Dl-space. Let x and y be any pair of distinct points
in X. Since f is injective and Y is Dl-space, there exist D-sets SX and Sy
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of Y containing f(x) and f(y), respectlvcly, such that f(y) ¢ S fx) ¢ S
By Theorem 3.3, f! (S) and ' (S) are sD-sets in X contammg X and y
respectively, such that y ¢ f! (S) and xe f (S) This implies that X is
a seml-D1 space.

Definition 34. A function f : X — Y is called C-irresolute if for
every C-set A in Y, its inverse image { 1(A) is C-set in X.

Theorem 3.5. If f : X — Y is a C-irresolute surjecton and S is a
cD-set of Y, then £'(S) is a cD-set of X.

Proof. Suppose that S is a cD-set of Y. Then there are C-sets O
and O, in Y such that § = 0\0, and O, # Y. By the C- n'rcsolutcness
of f, f(O)andf(O)arcC setsz Smce O #Y, we have f’ (O) # X.
Hence f'(S) = f (O )\f (O) is a cD-set.

Theorem 3.6. A space X is C-Dl if and only if for each pair of
distinct points x and y of X, there exist a C-irresolute surjection f of X
onto a C-D1 space Y such that f(x) = f(y).

Proof. Necessity: Take the identity function on X.

Sufficiency: Let x and y be any pair of distinct points in X. By
hypothesis, there exists a C-irresolute surjection f of X onto a C—D1 space
Y such that f(x) # f(y). Therefore, there exist cD-sets S and Sy in 'Y
such that f(x) € S f(y) ¢ S fly) € S fx) ¢ S Since f is
C-irresolute and SUI‘_]CCthC, by Theorem 35, f' (S) and ' (Sy) are cD-sets
in X such that x € f(S),y -3 f(S), y € f(S)) X ¢ f(S)
Therefore, X is a C- D space.

We can give the following notions:

Definition 3.5, A filterbase B is called cD-convergent (resp.
D-convergent) to a point x € X if for any cD-set (resp. D-set) A
containig x, here exists B € B such that B — A.

Theorem 3.7. If function f : X — Y is C-continuous and surjective,
then for each point x € X and each filterbase B on X cD-convengent to
x, the filterbase f(B) is D-convergent to f(x).
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Proof. Let x € X and B be any filterbase cD-convergent to x. Since
f is a C-continuous surjection, by Theorem 3.3, for each D-set V ¢ Y
containing f(x), f 1(V) < X is a cD-set containing x. Since B is
cD-convergent o x, then there exists B € B such that b < '(V); hence
f(B) < V. It follows that f(B) is d-convergent to f(x).

Corollary 3.1. If a function f : X — Y is C-irresolue and surjective,
then for each point x € X and ecach filterbase B onX cD-convergent to X,
filterbase f(B) is cD-convergent to f(x).

We can give the following notions:

Definition 3.6. A space X is called cD-compact (resp. D-compact) if
every cover of X by cD-sets (resp. D-sets) has a finite subcover.

Theorem 3.8. Let a function f : X — Y be C-continuous and
surjective. If X is cD-compact, then Y is D-compact.

Proof. Let ¥ be an cover of Y by D-sets. Since f is C-continuous
and surjective, by Theorem 3.3, £'(y) = {f'(V)IV € v} is a cover of X
by cD-sets. Since X is cD-compact, there exists a finite subcover {f Yv 1), e
f 1(Vn)} of f 1(7). Therefore, {V], wes Vn} is a finite subcover of g. Hence
Y is D-compact.

Corollary 32. Let f : X — Y be a C-irresolute surjection. If X is
cD-compact, then Y is cD-compact.

We can also give the following notion.

Definition 3.7. A space X is called cD-connected (resp. D-connected)
if X can not be expressed as the union of two nonempty disjoint cD-sets
(resp. D-sets).

Theorem 39. If f : X — Y is a C-continuous surjection and X is
cD-connected, then Y is D-connected.

Proof. Straightforward.

Corollary 33. If f : X — Y is a C-irresolute surjection and X is
cD-connected, then Y is cD-connected.
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