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ABSTRACT

In this study, some properties of Clerk Maxwell Theory related to Laplace operator
and  homogeneous polynomials are expended for ultrahyperbolic and homogeneous
polynomials.

1. INTRODUCTION

In the well known Clerk Maxwell Theory related to spherical
harmonics [5; p. 212] it is shown that if fn(x,y,z) is a homogeneous
polynomial of degree n, then
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In this study, Clerk Maxwell Theory is expended for the
ultrahyperbolic operator defined by
p .2 q .2
Lw=y9t_you m

=l .2 .2
0x, ayj

P q
and the Lorentzian distance r defined by 1* = Z‘i xi2 - f_% yj2 . The domain
i= =

of L is the set of real valued function u(xy) in CZ(D), where
X = (KX ) and y = (yl,...,yq) are the points in RP and RY and
respectively and D is the domain of u in RP*Y,
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2. SOME LEMMAS

In this section, we give some lemmas which are extensions of some
theorems given in Maxwell Theory, to the p+q dimensional space.

Lemma 1. Let fn(x,y) and ¥ (x,y) be any homogeneous polynomial of
degree n such that they are homogeneous separately of degree k and s,
(k+s = n) of the variables x = (xl,...,xp) and y = (yl,...,yq) respectively.
Then

f(—ay) Y. (xy) = \V(Ox ay) £ (x.y) 0))

where - = (—-— —) 3.8 i
&  ox Ox ay ay 3}’
Proof. Let n be a natural number, Ai, Bj be real constants and let
= {1,2,..N} be a set of integers, such that N is the number of the
maximum term in a n-th degree homogencous polynomial of p+q
variables. Then the functions f and A explicitly can be written as

f(x,y)-EAx xl’y Zk_k Zs = 3)
1" 1° =l
"ZBkjlijyg‘ 9‘1 TH k.34 -
A xy) = & jxl ...Xp 1...yq P 2K =k, & s, = 8 @)

wherek k o sJ are elements of the set {0,1,..,n} and k + s = n. In
view of (3) and (4), the left hand side of (2) can be rewritten as

f(—g) v, (xy) = -(_) {—)( ) {_)}

g Y4 4
{2 Bjxl1 kayll...yqq}

jeK

From the right hand side of this final equality, we can see that the terms
for which i # j are diminished, since for these terms the order of the

denvatlves are higher than the power of the variables and Z k = E k =k

q v=l v=1
and Z s, = 2—:1 sJV= s. Thus
fu(&,gy—) Vo) = T AB).()!6)!-(s) ®)
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Similarly, using of (3) and (4), the right hand side of (2) can be
rewritten as

o [aofe e
{2 Ax‘ xlﬁ’ys‘ S:

ieK

©

i i i i
= E( ABK)L.(k)!(s))!..(8))!
Thus, (5) and (6) complete the proof.

Remark. For the later discussion, here we use the homogeneity with
respect to the variables x and y, but this lemma can be proved without
homogeneity assumption separately on the variables x and y.

Lemma 2. Let \yn(x,y) be any homogeneous polynomial of degree n, such
that it is homogencous separately of degree k and s, (k+s = n) of the
variables x = (xl,...,x) and y = ¥, ,y) respectivcly Then

P
3 9 9
le?l"' ...'l')(p-a—u'—-—yl Wl— Yy \l,(ul’ ? p’vl’".’vq)
P
= (—-l)s n! ‘Vn(xl ,-«,Xp,ylv--qu) (7)

Proof. Let n be a natural number and let K be a set of integers,
K = {1.2,...N}, such that N is the number of maximum term in a n-th degree

homogeneous polynomial of p+q variables. For ki1 + ... +k; + si1 +..+ s; =n,

using the binomial theorem [1,p.823], we have

n

d 9 J !
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laﬂ p all y1 aV y 439y ) ( ) E ' \ : '
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‘ q)
Since LA (u,v) is a homogencous polynomial of degree n, clearly
J g2
\V(Xv)’)—EB lukag ,Zki Zs =s,kts=n 9
jeK v=l v=1

Thus by (8) and (9), we have
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which completes the proof.

Lemma 3. Let f (x,y) be a homogencous polynomial satisfying the
assumptions of Lemma 1. In addition, let w = ¢(x1,...,xp,y1,...,yq) and
F = F(w) be any functions having n-th order continuous derivatives
respectively in a domain D < RP™ and in ¢(D) c R. Then,
-1 it
f(—ay) Fw) = I 1, dﬂi({:v)

Here y % AR A which depend only on the variables x

(10)

PRy Y ¥ for

which the functions to be determined.

Proof. By (3), we have

i i i
8

9 8y py = a\' () (1n
) FOO = A (ax) { )(ayl {ayq) Fw)
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i i i i
Since w = ¢(xl,_._,xp,yl,.__,yq) and (k1 + ..+ kp) + (SI + .+ Sq) = k+s = n
successive differentiation of F(w) with respect to X gives

Hw) _ dF
& dw X
2
'Fv) d_li (ﬂ)+i ?._2
ax1 dw axl
G fn g |
aF(W)=B0—-——dl_:+Blld,F+ .+B;i4——
I I 1 1
o dw aw't”

where the coefficients B;,B ’Bklll are the functions x , ek Vo el
Similarly, taking the required derivatives with respect to the remaining
variables, we get

N N w . dFw)
(__) (_) (_) {—) Fw) = 3 P,
axl axp oy, ayq' m=0 ™

Since Pim are the functions of xl,...,xp,yl,...,yq by (11)

-l nm
F(w)- zaxe LY
ieK m=0 dwn«m
o1 n-l
-3 (5 ap ) d”‘F(w) -3y d Fw)
m=0 \ieK m=0 n-m

where X, = EI.( Alle which is what we needed.

Lemma 4.Lect fn(x,y) and ¢(x,y) be as in Lemma 3. Then

n-1

n T Ly xy) ¢ xy) (12)
m=0 m!

) n
fn(a’g) {oGxy)}

Proof. If we let ¢(x,y) = w and F(w) = w" ie.

F(w) = F(0(xy)) = F{O(K oo Y ey )} = {QX ek Y ey O}
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by (10) the proof follows easily.

Lemma 5. Let fn and ¢ be as in Lemma 3 and let u = (ul, ...,up) and
v = (v yeeesV ). Then

) {¢(x,y)} o _xo,o) £( ™ av) {¢(x+u,y+v)} (13)
d a
— , and — = (— , .. , —).
where ( o 6up) ™ (av avq)

Proof. Let (x,y) € D be fixed point. Consider the neighborhood points

(x+u,y+v) € D and replace (x,y) by (x+uy+v) in (12). Since 9 9
9 dx+u) ou
= — by (12) we can write

i)
d y+v) ov
fn(i,%) {11>(X+u,y+v)}n = n!

A XHUY+V) + X (XHuy+V) G(x+Uy+Y) +.4+

X, (XFUy+V) ¢ (x+u,y+v)

(n 1)'
and from this taking the limit (u,v) — (0,0), we get

A av) {o(x+uy+v)} = n!{xo(x,y) + X XYOXY) + .+

Ly, ) ( )} (14)
+ — X, X,
(yp Rt VR
Since the right hand sides of (12) and (14) are equal the left hand sides
must be equal. That proves the equality given in (13).

3. FUNDAMENTAL THEOREMS

In this section, we give the exact expressions for the coefficients of
the (10) type expansions and we investigate some relations between X,
and ultrahyperbolic operator L.

Theorem 1. Let f (x,y) be any homogencous polynomial of degree n such
that it is homogeneous separately of degree k and s, (k+s = n) of the
variables x = (xl,...,xp) and y = (yl,...,yq) respectively. In addition let

= ¢(x1,...,xp,yl,...,yq) and F = F(w) be any functions having n-th order
continuous derivatives respectively in a domain D of p+q dimensional
space and in ¢(D) c R, then
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n-1

= 1
(_g) F9) =2 ot oo, ,,( ,——> [oce+uy+v) - 0]
dn—mF(q))
T (15)
do

Proof. To prove the theorem first let

{o+uy+v)} = {o&y) + [ox+uy+v) — o(xy)l}

By applying the binomial theorem to the right hand side of this, we get

{Ox+uyv)) = ): i feosuye) - oy} (o))
Using this result in (13), we obtam
oy oen)'= tm e 3

v)——)(OO) 2o av m=0 m
Soxruyrv) -0y (oY)

Since the last term drops out from the right hand side of this equality,
we get

d d n L
f (—— W =n! n!
“(ax 3}’) {ox Y)} ! rfEO m!(n—m)!
d m 16
* o) f“(au v ) {oecruys) - o6y {0en) (16)
Comparing (12) and (16), we obtain

) {0Ccruy+) —oxy)) an

X(,Y)—-( m)' (uV)—)(O,()) “a.lav

where m = 0,1,....n-1.
On the other hand, with w = ¢ in (10) we have
d F(¢)

o
By (17) and (18), we have the result.

(2, ay) F(9) = Z 1,09 ——2 (18)

Theorem 2. Let fn and F be functions as in Theorem 1. If L is the
ultrahyperbolic operator defined in (1) and
P

q
dxy) = inz_ Zyz ,
i=1 =
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then
[n/2]

i i - dn_mF(¢) m
(2D Fe = o 22 S0

R5Y) (19)
d¢
Proof. By the above definition of O(x.y)

[ox+uy+v) - o]
= {(x1 + “1)2+'"+ (xp + up)z— [(y1 + v1)2+...+ (yq + vq)z] - [xl2 +..4 x2 - (yf +.t yl)]

n-m

[2(x +xXu —yv — —yv)+(u2+ +u2—v— —v]
U+ U A AA Lt

Thus, by applying binomial expansion to the last expression above, we
get

[oCxtuy+v) — 0xy)]

p
n-m m-g 2 2 2

- ——— —V, =V
( ) {2(x R LS AR yqvq)} @+ tu =V ;)

By substituting this in (17), and noting that all terms for which B # m
vanish, we have

Xa(X9) = (n—m)' oo Gy av) (

m
2m 2 2 2
. (2(x1ul+...+xpup—y1 l—...—yqvq)}IP (u1+...+up—v1—...—v:‘)
n-2m .
mi(n2m)! @-00) "gu v
2 2 "
.{(xu+ BRI At yv)} (u+ AU =V - —v:) (20)
Using Lemma 1, this equality can be written as:
e 9 e g\
y)=——— 1 —+ .. +X Yy, —
X = i zmt 6nse0 (xl Y
m
az+ +82 62 62 fu,.0.v,.v) @n
-_— aee T T T T eee T PRI AP O
CE: O O
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Let
m
& g & Fa
—5+ - t—s s — f(u —_— ,...,vq)
du du. oV ov
1 p 1 q
= gu_zm(u1 ,...,up,vl ,...,vq) 22)

Thus, g o is a homogeneous polynomial of degree n-2m and so by
Lemma 2,

x, 94 +x——a—y—a——y—am2mg (U]l VeV )
lau aan Paup lavl e q avq r2me 1 P, TR q
_ s
= (-1)’(n-2m)! gn_Qm(xl,...,xp,yl,...,yq) (23)

Hence by (21), (22) and (23) we can write
n-2m

L&y = 1) 2

e B oKy XY oY)

On the other hand, considering (22) and (1), we get

m

m2m [ 2 2 2 2
2 d d d d
X, (xy) = ) ey L. S . £ (K XY ¥ )
m! ax2 ax2 2 2 P q
1 P ayl ayq

n-2m

2
= (1) — L £ Ry XY Y
m! 24)

Hence by substituting the values of X,y M= 0,1,2,..n-1 of (24) in (18),
we obtain (19). We remark that the number of the terms in (18) is n, but
the number of the terms in (19) is less than n. This is because

L f(xy) =0 for [%] <m<n-1

where

; if n is even

3 if n is odd

Theorem 3. Let fn(x,y) be as in Theorem 1. Then
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d 9, 2pq

f (— r
o

ko m (p+q-2) +2) +2(n-m)-4) m
= () 3 " L Pl radnmD Ty (5

=0 m!2 7
where L is the ultrahyperbolic operator defined in (1), and r is the
Lorentzian distance defined by
P q 5 )
F=Xx-Zy =k -l >0 (26)

— 1 =
= = 2pq

Proof. In (19), let ¢ = 1* and F(¢) = ¢ 2 = r** % Then, since
IR _ IC") | 0 0 prpnd) 2oen

b1 n -
“@ day &'F ?
and substituting this expression of (j))
d¢o

with n replaced by n—-m we obtain (25).

in the right hand side of (19)

Conclusion 1, Let fn(x,y) be as in Theorem 1. If fn is a solution of the
ultrahyperbolic equation Lu = 0, then

£ 22 By = 02 L9 ¢ ) @)
ox dy do
and
9 9, 204 _ , .k (prq-2pte).{pHqr2n4)
fﬂ(&—ﬁy—) r o= (1) - fxy) - (28)

Proof. Since fn(x,y) is a solution of the equation Lu =0, Lfn= szn =..=
men = 0. Using this facts in (19) and (25) we obtain respectively (27)
and (28).

Theorem 4. Let fn(x,y)be a homogencous polynomial defined in Theorem 1
and let r be given as in (26). Then the expression

[n/2}

3, (7 L e e md 1y 0o)
m!2

is a solution of the equation Lu = 0.

Proof. By using the definitions of L and r, it is casy to show that
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Le™ = oo + p + q — 2r*?

for any real parameter o. Thus L(rz”‘H]) =0. On the other hand, since both
a9 - a9 0 49

f(— and L rators have constant coefficients, Lf (——) = { (——

“(ax’@) ope n(ax ay) “(8x L

has the commutative property. Therefore,

d 3, 2pq| _ _(_:)-_9_ g _
et 7o) = o 2™ - 0

This shows that, the left hand side of (25) and thus the right hand side
of (25) which is the same as the left hand side, that is the expression in
(29) is a solution of the equation Lu = 0. This completes the proof.

Note that, since Lu = 0 is a linecar homogencous equation, it is obvious
that the multiplier (—l)k appeared on the right hand side of (25) can be
omitted.

Remark. This theorem says that for any homogeneous polynomial f (x.y)
can be used to obtain a solution to Lu = 0 so that fn(x,y) is not a
solution of the equation Lu = 0 but it satisfies the conditions of
conclusion 1.
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