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ABSTRACT

In this study, some properties of Clerk Maxwell Theory related to Laplace operatör 
and homogeneous polynomials are expended for ultrahyperbolic and homogeneous 
polynonıials.

1. INTRODUCTION

In the well known Clerk Maxwell Theory related to spherical 
harmonics [5; p. 212] it is shown that if fjx,y,z) is a homogeneous 

polynomial of degree n, then
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In this study, Clerk Maxwell 

ultrahyperbolie operatör defined by

qp q
- V' 5 uLu = 2^--------—

i=l j=ı

Theory is expended for the

(1)

qp
and the Lorentzian distance r defined by r^ = - 2 y^ • The domain

i=l ’ j=l J
2

of L is the set of real valued function u(x,y) in C (D), where
(Xj,...,x ) and y =X = (Xj,...,x ) and y = (yj,...,y ) are the points in and and 

respectively and D is the domain of u in R’*'^.



140 A. ALTIN, F. TAŞDELEN

2. SOME LEMMAS

In this section, we give some lemmas which are extensions of some 

theorems given in Maxwell Theory, to the p+q dimensional space.

Lemma 1. Let f^(x,y) and i|Z^(x,y) be any homogeneous polynomial of 

degree n such that they are homogeneous separately of degree k and s, 

(k+s = n) of the variables x = (X],...,x ) and y = (y ,...,y) respectively. 
Then

a d a af ) V = V ) f (x,y)as’ay dx.'dy (2)

1-where — = v 
('ax^’ ’aXp

.) and A = .d a a

Proof. Let n be a natural number. A., B. be real constants and let
> j

K = {1,2,...,N} be a set of integers, such that N is the number of the 

maximum term in a n-th degree homogeneous polynomial of p+q 
variables. Then the funetions f and \|Z^ explicitly can be written as

‘ i P i ’ •
f (x,y) = 'X, Ax,'..jc Py\.y’ , Z k = k , Z s‘ = 

” itle > 1 P -^1 ^q ’ w V ’ V

A 

q

p q

(3)s

V„(x,y) =
Z B.x'‘’..A'^^’...y 
jlK J 1 p-^ı

, Z < = k , z 

v=l v=l
(4)s

where k'^, k^, s^, are elements of the set {0,l,„.,n} and k + s = n. In 

view of (3) and (4), the left hand side of (2) can be rewritten as

f (±4-) V (x,y) = J1. a/A.| ' J. 
" âx dy |ieK >10X1) y

s,■1

ax
. p

.^ql >
d d

.^1

i
j 1

. ıZ B.x’...x Py,’...y “I itK J> p-^1 ■^qqıjeK

From the right hand side of this final equality, we can see that the terms 
for which i j are diminished, since for these terms the order of the

P P
derivatives are higher than the power of the variables and X k’ = Z k^ = 

q . q . v=ı '' v=ı ''

V
and Z s* = Z 8^ = s. Thus 

v=ı '' v=ı

(5)
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Similarly, using of (3) and (4), the right hand side of (2) can be 

rewritten as

V (—,—) f (x,y) = {Z B 
^"âx^ ” |jeK J

(6)
. Ax^’..jt'^^'...y^'’/

litK ‘ 1 P J

= E AB.(k;)!...(kS!.(s;)!...(s’)! 
1€K P

Thus, (5) and (6) complete the proof.

Remark. For the later discussion, here we use the homogeneity with 

respect to the variables x and y, but this lerama can be proved without 

homogeneity assumption separately on the variables x and y.

Lemma 2. Lxt V],(x.y) be any homogeneous polynomial of degree n, such 

that it is homogeneous separately of degree k and s, (k+s = n) of the 

variables x = (x^,...ptp) and y = (yj,..-,y|^) respectively. Then

du,
... + X A_v Al

P du ’ dv, dv I 1’ * p’ 1’ * g-'

= (-1) n! ,...A (J)

Proof. Let n be a natural number and let K be a set of integers,
K = {12,—JM}. such that N is the number of maximum term in a n-th degree

homogeneous polynomial of p+q variables, For kj + ... + s‘ + ...

using the binomial theorem [l,p.823], we have
II

; _L_y l_.,._y = (-1/2 _

(k>-(k>Ksİ)!..-(<)!
nl

d 
du,

s,

(8)

Since \|rju,v) is a homogeneous polynomial of degree n, clearly

V (x,y) = Z B.u^'...u'‘Pv^'...v^q , Z k'’ = k , Z 
jeK J 1 P 1 q vtl v ■^71

s^ V s , k+s = n. (9)
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Thus by (8) and (9), we have



142 A. ALTIN, F. TAŞDELEN
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xJ'..Aj7?-yJ = (-l)n!vJx,...Xpyı...yq) 

which completes the proof.

Lemma 3. Let f^(x,y) be a homogeneous polynomial satisfying the 

assumptions of Lemma 1. In addition, let w = (t>(x^„..,x .yp-.-.y^) and 

F = F(w) be any functions having n-th order continuous derivatives 

respectively in a domain D c and in <|>(D) c R. Then,
n-1

dx dy 01=0™ , ınn 
aw

(10)

Here Zo’Zı- .Z,
'n-I

which depend only on the variables Xj,...,Xp,y^,...,yq for
which the functions to be determined.

Proof. By (3), we have

f (±4-) F(w) = L A
"axo!y ieK '

k, s, S,q 
F(w)

p

(11)
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Since w = and (kj + ... + kp + (s^ + ... + s^) - k+s = n

successive differentiation of F(w) with respect to x gives 

oF(w) _ (ff? dfi
^1 

â^w) _

dw 

d^F 

dw^

âsvl^
+ -^. 

dw

â'''F(w) 

dXj’

i d‘‘‘’‘F

dvv^' ‘

dF 
dw

where the coefficients are the functions Xp -’y,-

1

dXj

1 âx^^

=Bİ b;
dıv*^

1 + - +

Similarly, taking the required derivatives with respect to the remaining 

variables, we get

p

s. n-1 İHTI
V A V D* d Hw)F(w) = X ------- —

q/
, ınn 

dw
m

Since P are the functions of x by (11)
m 1 p*'! •'g

n-1

f(_L4-) F(w) = Z A Z P’
“ ck ây İeK ’ nı=n , n-4U 

dw

n-1

msO UeK , n-m' ’ dw

n-1
= z X 

m=0 'm

d'^Ffvv)

, n-m 
dw

where X„ = Z AP which is what we needed. 
ieK ' "•

Lemma 4.Let fı(x,y) and <()(x,y) be as in Lemma 3. Then

n-1 A n w— i nı

Oi ay nı=o m! ™

Proof. If we let <}>(x,y) = w and F(w) = w” i.e.

(12)

nF(w) = F(<|)(x,y)) = F{4>(x^.....Xp,y^,...,y^)} = {<KXı.-..Ptp,yı,...',yq)}’ 
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by (10) the proof foUows easily.

Lemma 5. Let f and ö be as in Lemma 3 and let u = (u , ...,u ) and 
n ’ İp

V = (v ). Then
1 n'

n

dx. oy
lim 

(u.vj-KOJ)) (13)

where — = (-—
Al

— , — ,---- ) and — = (—— ,
du, du dv dv. 

1 p 1
- ’ dv 

q

d
3v

Proof. Let (x,y) e D be fixed point. Consider the neighborhood points

(x+u,y+v) e D and replace (x,y) by (x+u,y+v) in (12). Since

and
d 

d(y+v)
= — by (12) we can write 

dv

d 
â(x+u)

d 
da

n
f {<t>(x+u,y+v)}“ = n! /Xo(x+u,y+v) + Xı(x+u,y+v) (|)(x+u,y+v) +...+ 

dy (

1 
(n-1)!

n-1
[(x+u,y+v) (|) (x+u,y+v)

and from this taking the limit (u,v) -4 (0,0), we get

lim
(u,v)-XOjO)

r) A
{<t)(x+u,y+v)} = n! Xo(x,y) + Xı(x,y)())(x,y) + ... +

OU OV I

1 
(n-1)!

n-1
(14)

Since the right hand sides of (12) and (14) are equal the left hand sides 
must be equal. That proves the equality given in (13).

3, FUNDAMENTAL THEOREMS

In this section, we give the exact expressions for the coefficients of

the (10) type expansions and we investigate some relations between % 
and ultrahyperbolic operatör L.

'm

Theorem 1. Let f^(x,y) be any homogeneous polynomial of degree n such 

that it is homogeneous separately of degree k and s, (k+s = n) of the
variables

w = (j)(x^,...,Xp,y^

X = (x^,...,Xp) and y = (y^,...,yq) respectively. In addition let
,y(^) and F = F(w) be any funetions having n-th order

continuous derivatives respectively in a domain D of p+q dimensional 

space and in <t)(D) c R, then

+

+
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f(±3. 
"âx^

0-1

-)FW=L
ra=O I

r f ıIım f (—,— 
(n-m)! (u.v)-xonj " âu öv

-) [(|)(x+u,y+v) - (t)(x,y)] |1

n-m
d F((]))

n-m
d0

Proof. To prove the theorem first let
n

{<|)(x+u,y+v)} = {())(x,y) + [<l)(x+u,y+v) - <l>(x,y)]}

(15)

By applying the binomial theorem to the right hand side of this, we get
n ”

{<t)(x+u,y+v)} = 2
nı=o m!(nHm)!

n! {<()(x+u,y+v)-(|)(x,y)} {<t)(x,y)}

Using this result in (13), we obtain
n

f(—,—) {(t)(x,y)} = lim
(u,v)-^O,O)

f(±,±)2 ------------
” clu dv m=o m!(n-m)!

n!

m. {(|)(x+u,y+v) - (|)(x,y)}‘’ ” {(|)(x,y)}’

Since the last term drops out from the right hand side of this equality, 

we get
n-l

n!
OK. dy nı=o m!(n-m)!

lim 
(n,vMPfl)

{(l)(x+u,y+v)-(t)(x,y)} {<))(x,y)}
âu âv

(16)

Comparing (12) and (16), we obtain

Xjx,y) = lim
(n-m)! (u,v)^ojo)

{<|)(x+u,y+v) - ())(x,y)}'™1

where m = O,l,„.jn—1.

On the other hand, with w = (j) in (10) we have
n-1

f f \ Ü//K\ V A /
” ftt ây nı=o ™

d())
By 0.1} and (18), we have the result.

(18)

Theorem 2. Let f and F be funetions as in Theorem 1. If L is the 
n

ultrahyperbolic operatör defined in (1) and
qp

<|)(x,y) = İL - İL y^ , 
1=1 j=l J
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then
[nZ2] n-2ra

V^’^)F(0) = (-n Z 
ay nı=o m!

n-ra
d F(0)

n-nı
d(|)

L"'f„(x.y)
(19)

Proof. By the above definition of (}>(x,y)

[<t)(x+u,y+v) - (Ks.y)]"^

(2 2 1 2 21 r 2 ;
(X, + Uj) +...+ (Xp + Up) - [(yj + V,) +...+ (y^ + v^) J - [Xj +...+ x - (yî+.-+yJ»])

IMÎl

:,u, + ... + X u - y,v, 
11 p p •'11

... - y V) + (u, + ...
•'q

2 
''l

.n-m

- [î*’, 1 1
1 1

+ u 
p

1
p

Thus, by applying binomial expansion to the last expression above, we 

get

[<))(x+u,y+v) - <|)(x,y)]’^

IHTI
n-m 2(x,u, + ... + X u - y,v, -...-y V )l (u, + . '■11 pp-'iı ■'qq^ı ı

2 :
..+ u -y. 

p

,2 -...-vV
q'

By substituting this in (17), and noting that ali terms for which g m 

vanish, we have

i lim f(±,±).("-“)
(ıwn)! (u,v)-xop) “"âuav 1 g f

. f2(x,u, + .„ + x u -y,v. - 
1^11 pp*'ll ^q\'

.ib-2ra 2 2
...+ u 

p

1 
-''1-

... - v5
q^

ra

.n-2m
d a—?--------- lim f (—,—)

m!(n-:^)! (u,vMOjo) -"öu dv

f(x,u, + ...+ x u -y.v,-...-y V )1 (u, + ...
1'11 pp •'11 "'<1 <1 j 1

...-v5n'q'

ra

(20)
1 

+ u
p

2

Using Lemma 1, this equality can be written as:

V’^.y) =
ıı-2nı

2
lim d d a

av, ^avı
1 qı

pâu

n-2ra

' i
----  + ... +

au^ 
p

i 

dv^
q.

ra

m!(n-2m)! (u,v)-»«)X))

^'1

X
*^ı

d

p

f (u,,...,u ,v,,...,v) n' 1 ’ p’ 1’ (( (21)
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Let

da 
p

d^
ra

1* ’ p’ 1’ *

= g (u ,y )
°n-2m 1 p 1 q

(22)

Thus, g
n-2m

Lemma 2,

İS a homogeneous polynomial of degree n-2m and so by

n-2m

..+ X----------y,-------- ... - y — 
P du dv, “i dv i

g - (u, ,v, )°n-2nı 1 p 1

= (-l)\n-2m)!g; (x ,...,x ,y ) ’n-2m 1 p-'l -'q

X

i
+ ,,, + — •“

’ du,
1

d

p

dv^ 
q

d d

q

(7-3)

Hence by (21), (22) and (23) we can write 
^n-2ra

S" 2
X„(X,y) = (-1) g^2m(\’-^’yi’-’yq)

On the other hand, considering (22) and (1), we get 

z.

z„,(x,y) = (-1)'
n-2m 

s 2 
( ----------

m!

n-2m

2 2
dx dy,p ■'1 •'q

ra
= (-1) -------L f (x,,....x ,y ,...,y)'' '' jjjl n'' 1’ ’^pVp

(24)

.» 2

—+...+-------
2

Hence by substituting the values of m = 0,l,2,...,n-l of (24) in (18), 

we obtain (19). We remark that the number of the terms in (18) is n, but 

the number of the terms in (19) is less than n. This is because
ral” f (x,y) = 0 for (0-1 < m < n - 1

where
n
2—1 = 

.21

; if n is even

if n is oddn- 1 .
2 ’

Theorem 3. Let f^(x,y) be as in Theorem 1. Then
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f , â d2 f (—<—^) t 
"ax^

2-p-q

M
= (-1? Z (-1)” 

ra=0

1 (p+q-2)(pFq)(p+q+2)...(p+q+2(n-m)-4)

m!2
jP+q+2(n-m>-2

T . s• L yx,y) (25)

where L is the ultrahyperbolic operatör defined in (1), and r is the 
Lorentzian distance defined by

P Q
= Zx^^-Ly;=|x|'-|y|'>0 

1=1 J=1 I 2i><i
(26)

Proof. In (19), let (J> = and F(())) = (j» - . Then, since

d”F((l)) _ dV ‘^)

n 
d<()

n
= (-1)

(p+q-2)(pFq)...(p+q+2n-4) 2-p-<H2n

d(6

and substituting this expression of
d”F((^)

n 
d(|)

in the right hand side of (19)

with n replaced by n-m we obtain (25).

2 
r

j2-p-q

n n
2

Conciusion 1. Let f (x,y) be as in Theorem 1. If f is a solution of the 
n n

ultrahyperbolic equation Lu = 0, then

and

F(<t)) = (-1)'2'' 
dx. dy

<i”F(<|>)
n 

d())
f„(x,y)

f ı d â, 2 f (—-—^) r
” âx

2-p-q k 
= (-1) (p+q-2)(p+q)...(p+q+2n-4)

■2n-2
f„(x,y) .

(21)

2
Proof. Since f_j(x,y) is a solution of the equation Lu = 0, Lf^ zz L f^ = ... = 
L”f]] = 0. Using this facts in (19) and (25) wc obtain respectively (27) 

and (28).

Theorem 4. Let f^(x,y) be a homogeneous polynomial defined in Theorem 1 
and let r be given as in (26). Then the cxprcssion 

[nG] 
2 (-1)’ 
nı=O

1 (p+q-2)(p+q)(p+q+2)...(p4-q+2(n-m)-4)
m!2‘" jP+q+2(n-m>-2

L\(x,y) (29)
m

is a solution of the equation Lu = 0.

Proof, By using the definitions of L and r, it is easy to show that
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L(r“) = a(a -h p + q _ 2)r“ 

for any real parameter a. Thus L(r^ p^) = 0. On the other hand, since both

L operators have constant coefficients, Lf = f (— 
dx.dy "âxây''c!xc!y

has the commutative property. Therefore,

d dL f (JL JL) r' 
L " âx dy

= f (±,A)^?^^) = o2-p-q.

This shows that, the left hand side of (25) and thus the right hand side 

of (25) which is the same as the left hand side, that is the cxpression in 

(29) is a solution of the eguation Lu = 0. This completes the proof.

Note that, since Lu = 0 is a linear homogeneous equation, it is obvious 
that the multiplier (-1)^ appeared on the right hand side of (25) can be 

omitted.

Remark. This theorem says that for any homogeneous polynomial f^^C^.y) 

can be used to obtain a solution to Lu = 0 so that H^^y) is not a 

solution of the eguation Lu = 0 but it satisfies the conditions of 
conciusion 1.
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