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ABSTRACT

In this paper we find new characteristic properties for 2-dimensional ruled surface M
in IRl" and give the sufficient and necessary conditions for which the space-like ruled
surface M is to be total geodesic. In addition, some characterisation which is the well-known
for the ruled surfaces in the Euclidean 3-space was generalized for the space-like ruled
surfaces in R "

1. INTRODUCTION

We shall assume throughout this paper that all manifolds, maps
vector fields, etc... are differentiable of class C”. Consider a general
submanifold M of the Minkowski space IR ". Suppose that, D is the
Levi-Civita connection of Minkowski space R ", while D is the
Levi-Civita connection of Semi Riemann manifold M. If X and Y are the
vector fields of M and if V is second fundamental form of M, we have
by decomposing D, Y in a tangential and normal component.

D,Y = DY + V(XY) 1.1
The equation (1.1) is called Gauss equation, [1].

If & is any normal vector filed on M, we find the Weingarten
equation by decomposing Exf;in a tangential and normal component

Dt = - A, + DiE. (12)
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Ag determines at each point a self-adjoint lineer map and D' is a
metric connection in the normal bundle x(M). We use the same notation
AE for the linear map and the matrix of the lineer map, [1].

A normal vector field & is called parallel in the normal bundle x*
M) if we have D;E;, = 0 for each vector X. If 1 is a normal unit vector
at the point p € M, then

G(pn) = det ATl (13) -
is the Lipschitz-Killing curvature of M at p in direction m, [2].

Suppose that X and Y are vector ficlds on M, while £ is a normal
vector field on x1(M). If the standart metric tensor of IRI“ is doneted by
<> then we have

(DYE) = (V&) (14)
and
- (ByYE) = (AY) . (15)
From the above equations we obtain
V XY)E) = (A, X, Y) (1.6)

If &1, &2, e Y;n-z constitute an orthonormal base field of the normal
bundle xl(M), then we set

V XNE =V, XY) (1.6)
or
n2
VXY) = 3 VEKYE. (1.7)
=1
The mean curvature vector H of M at the point p is given by
n2
= j 1.8

[H]| is the mean curvature. If H = 0 at each point p of M, then M is
said to be minimal, [1].
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2. 2-DIMENSIONAL SPACE-LIKE RULED SURFACES IN Rl"

Let a be a space-like curve and e(s) be a space-like unit vector on
the generators in R " If the space-like base curve o is an orthogonal
trajectory of the generators then we get a 2-dimensional ruled surface M.
This ruled surface is called 2-dimensional space-like ruled surface and
represented by

y(s,v) = a(s) + v e(s).

Definition 2.1: Let M be 2-dimensional space-like ruled surface in
]Rl'l and V be second fundamental form of M. If V(X,X) = O for all X
€ M) then X is called an asymptotic vector ficld on M.

Theorem 2.1: Let M be 2-dimensional space-like ruled surface in
lRl“. Then the generators of M are asymptotics and geodesics of M.

Proof: Since the generators are the geodesics of B ", we have

ﬁee =0.
If we set this in the Gauss equation, we get

De + V(ee) = 0 or De = -V(ee).
Since De € x(M) and V(ee) € xl(M) we get De = 0 and Viee) = 0.
Therefore the generators of M are the asymptotics and geodesics of M.

Suppose that {e €} is an orthonormal base field of the tangential
bundle xM) and {§, &,...., € ,} is an orthonormal bundle x1(M). Then
we have the following equations.

. . 2
= i .
Deé’;j = a]ue + ajlze:1 + 21 bE& , 1<j<n2
i=
. . n B
e _ i j i .
Delﬁj = a,e + ae + 21 bZié’;i , 1 <£j<n2 2.0
i

From these eqations we observe that
d =-a, ,a =0, 1<j<n

and



9% I. AYDEMIR, M. TOSUN, N. KURUOGLU

j
By =" [0 i } ' 22)
j j j .
)
Then we have the following corollary.

Corollary 2.1: The matrix A& is corresponding to the shape operator
of M and Ag. is a symmetric matrix in the sense of Lorentz.
il

Corollary 2.2: The Lipschitz-Killing curvature at p € M in the
direction of &J. is given by

G(p’;‘) = '(al 2j)2-

From (2.1) we have

4, = (D<) = - {De) 23)
and

Deie) = - (D) = 0 @4)
while

(Deye) = - (6 De) =0 2.5)

From (2.4) and (2.5) we observe that

— n —
De, € x M) or De = V(e) . Because of (2.3) we have

— n2 — n2 -

De, = Vee) =Y ej(&.i,Dee,) E=- 3 eat 26)
=l =1
'1’ ;] time-like

= ,E)=
E (J J) \1, Y;j space-like .

Because of (1.4) and (2.1) we find

% = D50 = - (A = - (Vee)) @7

and

w A == ad, = (Mee)g) + 1<j<n 28)
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Theorem 22: Let M be 2-dimensional space-like ruled surface in
lRl" and {e ¢} be the orthonormal base field of the tangential bundle y(M).
Then the Gauss curvature G can be given as follows

G= <ﬁeel’5e61>'
Proof: Let R be the Riemannian curvature tensor field of M. In this
case we get

G = (R(el,c) e,el) , [3]. 2.9)

By combining (2.9) and V(ee) = 0 we are faced with

G = (V(ee), Viee)) (2.10)
or

G= Del,ﬁee]).

e

From the above Theorem 22 Corollary 2.2 and the equation (2.6)
we have the following corollaries.

Corollary 2.3: The Gauss curvature of M with respect to the

elements of Ag..
n2 Jj 2
=3 efd,) . @.11)
£ .
Corollary 2.4: A space-like ruled surface M is developable if and

only if the Lipschitz-Killing curvture is zero at each point.

Theorem 2.3: Let M be a 2-dimensional space-like ruled surface in
R,". The mean curvature of M is

H= % g Viee,) -

Proof: From (1.8) we know that

2 O :
H=F 3¢ 2.12)
=

For the matrix Ag. given (2.2) we find
X j

t.’(‘Aij=-a"zz
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If we substitude (2.8) in (1.8) we get
H= % g V(ee,) -

Theorem 2.4: Let M be 2-dimensional space-like ruled surface in
R" Mis developable and minimal iff M is total geodesic.

Proof: We assume that M is developable and minimal. If XY € y(M),
we have X = ae + be, and Y = ce + de,.

Therefore we get
V(X,Y) = ac V(ee) + (ad + bc) Viee) + bd V(e e).

Because of Theorem 2.1 and minimality of M we have V(ee) = 0
and V(C1’e1) = 0. Moreover, since M is developable De, = 0. Thus we
can write V(e.e)) = 0 and V(X,Y) = 0 for all XY € x(M).

Now suppose that V(X.Y) = O, VX, Y € xM). Then we have Y%
(ee) = 0, Viee) = 0. Because of Theorem 2.1 we have

<]_3eclﬁ> =0 and <Becl’el> =0.

This means that Beel, is a normal vector field or ﬁeel = V(e,cl).

Therefore we have ﬁeel = 0. This implies that M is developable and V
(ee)) = 0 implies that M is minimal.

Let M be 2-dimensional space-like ruled surface in R,® and e be
unit space-like vector field of the gencrator. Then we have the following
equations of covariant derivative of the orthonormal base field {e, ¢, f;l,

€y oo €.}
e, = C € + €,0¥C, E_,1 +..+c 8,

e=1cy,e +¢C erc), & + ..+ ¢,

€ 2171 22 n°n-2

D¢ =
e, F,l C;,€, + C3,€+Cy, &1 + o+ 8

D, €2 = Cu t Sty E + o ¥t Conbaa’
1
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If we write these equations in the matrix form we get

FDHCI r0 c, €y c, F &

Delc -c, 0 Cp S e

— (2.13)
D& =& oECy O - Can & |
_De]{:'n»Z N __- eicln - E:iCZn B C3n - 0 _J L &u—Z _J

Theorem 2.5: Let M be a 2-dimensional space-like ruled surface in
lRl“. {e:1 £} be an orthonormal base field of the tangential bundle y(M)
and ofs) be an orthonormal trajectory of the generators of M. Then the
following propositions are equivalent.

i} M is developable
ii) The Lipschitz-Kiling curvature
G(p,&,j) =0,1<j<n2
iii) The Gauss curvature G = 0.
iv) In the equation (2.13), Cy = 0,3<k<hn.
v) Aé ) =0
y
vi) Bele € x(M).

Proof: i = ii : We assume that M is developable, since ai” = 0 in
(2.1), 1 £ j € n2, the Lipschitz-Killing curvature at point p in the
direction of &J. is given by

. 2
dpE)=-(d, () =0 ,1<j<n2.

Because of (2.6) and since M is developable we have
n2 .

= j

De, =- 3 Sj(aIZ)&j 0.

=

So we find G(p,ﬁj)

It

0, 1< j<n2.

ii = iii : Let G(p,ﬁj) =0,1<j<n2.
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Since we have

n2
Gp) =->dpk) . VpeM

1
we observe that G = 0, V p € M.

iii = iv : Suppose that G = 0, V p € M. Then because of (2.11)

we have aj12 =0,1<j<n2 So D& has no component in the
direction e. Hence we observe that ¢, = .3 € k € n, in the equation
2.13).

iv = v : Suppose that ¢, = 0.3 < k < n, in the equation (2.13).
That shows that D & has no component in the direction e. Thus we have
1ntheequat10n(21)a =0,1<j<n2

Moreover, since aj11 <]3 é,e) = - (&,Dc) 0 and becacuse of the
Weingarten equation we find

Ae) =0, 15j<n.
)

v = vi : Let A (e) = 0. Then, from the Weingarten equation, we
have ajn =0, aJ 0 1 < j £ n-2. Moreover, (c&) = 0 implies

[, e5) = - (Cﬁeﬁj)- (2.14)

If we se equations 2.1 and last equations we get

Buet)=- (B.5) = -
d
(ﬁele@ =

From the last equation we have
De]c € xM).

vi = i:Let D e e y(M). Then from the equation (2.14), we get
(D e, &) --a12 =0." 1 <j<n2 On the other hand, e[{e;, e)] = ¢
[1] implies that (ﬁc ,c1> 0 and e[{e, e)] = e[0] implies that <ﬁecl,¢> =0
(Since the generators are the geodesics of IRl , we have De = 0). Thus
Dee1 e x(M).
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Because of (2.6) and since aj12 =0. 1<j<n2, we write that _Decl
= 0.

This means tha tangent planes of M constant along the generator €
of M. ie. M is developable.

Corollary 2.5: Let M be a 2-dimensional space-like ruled surface in
RI“ with a Gauss curvature beign zero. If M is minimal, then ¢, = 0,1
<s<2,3<k<n, in the (2.13).

Proof: Let M be minimal. Then from the eqation (2.12) we have V
(e,€) = 0. If this result is set in the Gauss equation, we find

Delf:1 = Delc1 .

This means that Belel has no component in xl(M). Therefore we have
C,=0, 3 <k £n. (2.15)

in the equation (2.13). On the other hand, since G = 0, by hypothesis,
and from the Theorem 2.5 we know that C, = 0. 3 <k £n If we
consider this together with (2.15) we observe that C, = 0, 1<s<2,3
<k <n
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