Commun. Fac. Sci. Univ. Ank. Series A1 V. 46. pp. 93-101 (1997)

PROPERTIES OF 2-DIMENSIONAL SPACE-LIKE RULED SURFACES IN THE MINKOWSKI SPACE **R**, ⁿ

İsmail AYDEMİR* - Murat TOSUN** - Nuri KURUOĞLU*

- * Department of Mathematics, Faculty of Educations, Ondokuz Mayıs University, Samsun, TURKEY
- ** Department of Mathematics, Faculty of Arts and Sciences, Sakarya University, Sakarya, TURKEY

(Received May 26, 1997; Revised Dec. 6, 1997; Accepted Dec. 9, 1997)

ABSTRACT

In this paper we find new characteristic properties for 2-dimensional ruled surface M in \mathbb{R}_1^n and give the sufficient and necessary conditions for which the space-like ruled surface M is to be total geodesic. In addition, some characterisation which is the well-known for the ruled surfaces in the Euclidean 3-space was generalized for the space-like ruled surfaces in \mathbb{R}_1^n .

1. INTRODUCTION

We shall assume throughout this paper that all manifolds, maps vector fields, etc... are differentiable of class C^{∞} . Consider a general submanifold M of the Minkowski space \mathbb{R}_1^n . Suppose that, \overline{D} is the Levi-Civita connection of Minkowski space \mathbb{R}_1^n , while D is the Levi-Civita connection of Semi Riemann manifold M. If X and Y are the vector fields of M and if V is second fundamental form of M, we have by decomposing $D_X Y$ in a tangential and normal component.

$$\overline{D}_{X}Y = D_{X}Y + V(X,Y) \tag{1.1}$$

The equation (1.1) is called Gauss equation, [1].

If ξ is any normal vector filed on M, we find the Weingarten equation by decomposing $\overline{D}_x \xi$ in a tangential and normal component

$$\overline{D}_X \xi = -A_{\xi} + D_X^{\perp} \xi. \tag{1.2}$$

 A_ξ determines at each point a self-adjoint lineer map and D^\perp is a metric connection in the normal bundle $\chi^\perp(M)$. We use the same notation A_ξ for the linear map and the matrix of the linear map, [1].

A normal vector field ξ is called parallel in the normal bundle χ^{\perp} (M) if we have $D_X^{\perp}\xi = 0$ for each vector X. If η is a normal unit vector at the point $p \in M$, then

$$G(p,\eta) = \det A_{\eta} \tag{1.3}$$

is the Lipschitz-Killing curvature of M at p in direction η , [2].

Suppose that X and Y are vector fields on M, while ξ is a normal vector field on $\chi^{\perp}(M)$. If the standart metric tensor of \mathbb{R}_1^n is doneted by \iff then we have

$$\langle \overline{D}_{X}Y\xi\rangle = \langle V(X,Y)\xi\rangle \tag{1.4}$$

and

$$\langle \overline{D}_{X} Y \xi \rangle = \langle A_{\xi}(X), Y \rangle .$$
 (1.5)

From the above equations we obtain

$$\langle V (X,Y),\xi \rangle = \langle A_{\mathfrak{p}}(X), Y \rangle$$
 (1.6)

If ξ_1 , ξ_2 , ..., ξ_{n-2} constitute an orthonormal base field of the normal bundle $\chi^\perp(M)$, then we set

$$\langle V (X,Y),\xi_i \rangle = V_i (X,Y)$$
 (1.6)

or

$$V(X,Y) = \sum_{j=1}^{n-2} V_j(X,Y)\xi_j.$$
 (1.7)

The mean curvature vector H of M at the point p is given by

$$H = \sum_{i=1}^{n-2} \frac{\text{tr} A_{\xi_i}}{2} \xi_i. \tag{1.8}$$

||H|| is the mean curvature. If H = 0 at each point p of M, then M is said to be minimal, [1].

2. 2-DIMENSIONAL SPACE-LIKE RULED SURFACES IN \mathbb{R}_1^{n}

Let α be a space-like curve and e(s) be a space-like unit vector on the generators in \mathbb{R}_1^n . If the space-like base curve α is an orthogonal trajectory of the generators then we get a 2-dimensional ruled surface M. This ruled surface is called 2-dimensional space-like ruled surface and represented by

$$\Psi(s,v) = a(s) + v e(s).$$

Definition 2.1: Let M be 2-dimensional space-like ruled surface in \mathbb{R}_1^n and V be second fundamental form of M. If V(X,X)=0 for all $X\in\chi(M)$ then X is called an asymptotic vector field on M.

Theorem 2.1: Let M be 2-dimensional space-like ruled surface in \mathbb{R}_1^n . Then the generators of M are asymptotics and geodesics of M.

Proof: Since the generators are the geodesics of \mathbb{R}_1^n , we have $\overline{D}_e e = 0$.

If we set this in the Gauss equation, we get

$$D_e e + V(e,e) = 0$$
 or $D_e e = -V(e,e)$.

Since $D_e e \in x(M)$ and $V(e,e) \in \chi^{\perp}(M)$ we get $D_e e = 0$ and V(e,e) = 0.

Therefore the generators of M are the asymptotics and geodesics of M.

Suppose that $\{e_1,e\}$ is an orthonormal base field of the tangential bundle $\chi(M)$ and $\{\xi_1,\ \xi_2,...,\ \xi_{n-2}\}$ is an orthonormal bundle $\chi^{\perp}(M)$. Then we have the following equations.

$$\begin{split} & \overline{D}_{e}\xi_{j} = a_{11}^{j}e + a_{12}^{j}e_{1} + \sum_{i=1}^{n^{2}}b_{1i}^{j}\xi_{i} \quad , \quad 1 \leq j \leq n-2 \\ & \overline{D}_{e_{1}}\xi_{j} = a_{21}^{j}e + a_{22}^{j}e_{1} + \sum_{i=1}^{n}b_{2i}^{j}\xi_{i} \quad , \quad 1 \leq j \leq n-2 \end{split} \tag{2.1}$$

From these eqations we observe that

$$a_{2i}^{j} = -a_{12}^{j}$$
 , $a_{11}^{j} = 0$, $1 \le j \le n$

and

$$A_{\xi_{j}} = -\begin{bmatrix} 0 & a_{12}^{j} \\ a_{12}^{j} & a_{22}^{j} \end{bmatrix}.$$
(2.2)

Then we have the following corollary.

Corollary 2.1: The matrix A_{ξ_j} is corresponding to the shape operator of M and A_{ξ_i} is a symmetric matrix in the sense of Lorentz.

Corollary 2.2: The Lipschitz-Killing curvature at $p \in M$ in the direction of ξ_i is given by

$$G(p,\xi_j) = -(a_{12}^{j})^2.$$

From (2.1) we have

$$a_{12}^{j} = \langle \overline{D}_{e} \xi_{j} \varepsilon_{1} \rangle = - \langle \xi_{j}, \overline{D}_{e} \varepsilon_{1} \rangle$$
 (2.3)

and

$$\langle \overline{D}_{e} e_{1} e \rangle = - \langle e_{1} \overline{D}_{e} e \rangle = 0$$
 (2.4)

while

$$\langle \overline{D}_{e} e_{1} e_{1} \rangle = - \langle e_{1} \overline{D}_{e} e_{1} \rangle = 0$$
 (2.5)

From (2.4) and (2.5) we observe that

 $\overline{D}_e e_1 \in \chi^{\perp}(M)$ or $\overline{D}_e e_1 = V(e_1)$. Because of (2.3) we have

$$\overline{D}_{e}e_{1} = V(e_{\epsilon_{1}}) = \sum_{j=1}^{n-2} \varepsilon_{j} \langle \xi_{1}, \overline{D}_{e}e_{1} \rangle \xi_{j} = -\sum_{j=1}^{n-2} \varepsilon_{j}a_{12}^{j}\xi_{j}$$
(2.6)

$$\varepsilon_{j} = \langle \xi_{j}, \xi_{j} \rangle = \begin{cases}
-1, \xi_{j} \text{ time-like} \\
1, \xi_{j} \text{ space-like}
\end{cases}$$

Because of (1.4) and (2.1) we find

$$a_{22}^{j} = \langle \overline{D}_{e_{1}} \xi_{j}, e_{1} \rangle = - \langle A_{\xi_{j}}(e_{1}), e_{1} \rangle = - \langle V(e_{1}, e_{1}), \xi_{j} \rangle$$
(2.7)

and

tr
$$A_{\xi_i} = -a_{22}^j = \langle V(e_1, e_1), \xi_j \rangle$$
, $1 \le j \le n-2$. (2.8)

Theorem 2.2: Let M be 2-dimensional space-like ruled surface in \mathbb{R}_1^n and $\{e_1,e\}$ be the orthonormal base field of the tangential bundle $\chi(M)$. Then the Gauss curvature G can be given as follows

$$G = \langle \overline{D}_e e_1, \overline{D}_e e_1 \rangle$$
.

Proof: Let R be the Riemannian curvature tensor field of M. In this case we get

$$G = \langle R(e_1, e) e, e_1 \rangle , [3] .$$
 (2.9)

By combining (2.9) and V(e,e) = 0 we are faced with

$$G = \langle V(e,e_1), V(e,e_1) \rangle$$
 (2.10)

or

$$G = \langle \overline{D}_{e} e_{l}, \overline{D}_{e} e_{l} \rangle.$$

From the above Theorem 2.2 Corollary 2.2 and the equation (2.6) we have the following corollaries.

Corollary 2.3: The Gauss curvature of M with respect to the elements of $A_{\mbox{\tiny F}}$.

$$G = \sum_{j=1}^{n-2} \varepsilon_j (a_{12}^j)^2 . {(2.11)}$$

Corollary 2.4: A space-like ruled surface M is developable if and only if the Lipschitz-Killing curvture is zero at each point.

Theorem 2.3: Let M be a 2-dimensional space-like ruled surface in $\mathbb{R}_1^{\ n}$. The mean curvature of M is

$$H = \frac{1}{2} \epsilon_j V(e_1 e_1) .$$

Proof: From (1.8) we know that

$$H = \sum_{i=1}^{n-2} \frac{\text{tr } A_{\xi_j}}{2} \, \xi_j. \tag{2.12}$$

For the matrix A_{ξ_j} given (2.2) we find

$$\operatorname{tr} A_{\xi_{j}} = -a_{22}^{j}$$

If we substitude (2.8) in (1.8) we get $H = \frac{1}{2} \epsilon_j V(e_l \epsilon_l).$

Theorem 2.4: Let M be 2-dimensional space-like ruled surface in \mathbb{R}_1^n . M is developable and minimal iff M is total geodesic.

Proof: We assume that M is developable and minimal. If $X,Y \in \chi(M)$, we have $X = ae + be_1$ and $Y = ce + de_1$.

Therefore we get

$$V(X,Y) = ac V(e,e) + (ad + bc) V(e,e_1) + bd V(e_1,e_1).$$

Because of Theorem 2.1 and minimality of M we have V(e,e) = 0 and $V(e_1,e_1) = 0$. Moreover, since M is developable $D_ee_1 = 0$. Thus we can write $V(e,e_1) = 0$ and V(X,Y) = 0 for all $X,Y \in \chi(M)$.

Now suppose that $V(X,Y)=0, \ \forall \ X, \ Y\in \chi(M)$. Then we have $V(e,e)=0, \ V(e,e_1)=0$. Because of Theorem 2.1 we have

$$\langle \overline{D}_e e_1 e_1 \rangle = 0$$
 and $\langle \overline{D}_e e_1 e_1 \rangle = 0$.

This means that $\overline{D}_e e_1$, is a normal vector field or $\overline{D}_e e_1 = V(e_1 e_2)$.

Therefore we have $\overline{D}_e e_1 = 0$. This implies that M is developable and V $(e,e_1) = 0$ implies that M is minimal.

Let M be 2-dimensional space-like ruled surface in \mathbb{R}_1^n and e be unit space-like vector field of the generator. Then we have the following equations of covariant derivative of the orthonormal base field {e, e₁, ξ_1 , ξ_2 , ... ξ_{n-2} }.

$$\begin{split} & \overline{D}_{e_1} \, e_1 \, = \, c_{11} e_1 \, + \, c_{12} e + c_{13} \, \, \xi_1 \, + \, \ldots \, + \, c_{1n} \xi_{n-2} \\ & \overline{D}_{e_1} \, e \, = \, c_{21} e_1 \, + \, c_{22} e + c_{23} \, \, \xi_1 \, + \, \ldots \, + \, c_{2n} \xi_{n-2} \\ & \overline{D}_{e_1} \, \xi_1 \, = \, c_{31} e_1 \, + \, c_{32} e + c_{33} \, \, \xi_1 \, + \, \ldots \, + \, c_{3n} \xi_{n-2} \\ & \vdots \\ & \overline{D}_{e_1} \, \xi_{n-2} \, = \, c_{n1} e_1 \, + \, c_{n2} e + c_{n3} \, \, \xi_1 \, + \, \ldots \, + \, c_{nn} \xi_{n-2}. \end{split}$$

If we write these equations in the matrix form we get

$$\begin{bmatrix} \overline{D}_{e_{1}} e_{1} \\ \overline{D}_{e_{1}} e \\ \overline{D}_{e_{1}} \xi_{1} \\ \vdots \\ \overline{D}_{e_{1}} \xi_{n-2} \end{bmatrix} = \begin{bmatrix} 0 & c_{12} & c_{13} & \dots & c_{1n} \\ -c_{12} & 0 & c_{23} & \dots & c_{2n} \\ -\varepsilon_{12} & 0 & c_{23} & \dots & c_{2n} \\ -\varepsilon_{1} c_{13} & -\varepsilon_{1} c_{23} & 0 & \dots & c_{3n} \\ \vdots & \vdots & \vdots & \vdots \\ -\varepsilon_{1} c_{1n} & -\varepsilon_{1} c_{2n} & -c_{3n} & \dots & 0 \end{bmatrix} \begin{bmatrix} e_{1} \\ e \\ \xi_{1} \\ \vdots \\ \xi_{n-2} \end{bmatrix}. (2.13)$$

Theorem 2.5: Let M be a 2-dimensional space-like ruled surface in \mathbb{R}_1^n . $\{e_1.e\}$ be an orthonormal base field of the tangential bundle $\chi(M)$ and $\alpha(s)$ be an orthonormal trajectory of the generators of M. Then the following propositions are equivalent.

- i) M is developable
- ii) The Lipschitz-Kiling curvature

$$G(p,\xi_{i}) = 0$$
, $1 \le j \le n-2$

- iii) The Gauss curvature G = 0.
- iv) In the equation (2.13), $c_{2k} = 0$, $3 \le k \le n$.

$$v) A_{\xi_i}(e) = 0$$

$$vi) \ \overline{D}_{e_i} e \ \in \ \chi(M).$$

Proof: $i\Rightarrow ii$: We assume that M is developable, since $a^j_{11}=0$ in (2.1), $1\leq j\leq n$ -2, the Lipschitz-Killing curvature at point p in the direction of ξ_i is given by

$$G(p,\xi_1) = -\left(a_{12}^{j}(p)\right)^2 = 0$$
 , $1 \le j \le n-2$.

Because of (2.6) and since M is developable we have

$$\vec{D}_{e}e_{1} = -\sum_{j=1}^{n-2} \varepsilon_{j}(a_{12}^{j})\xi_{j} = 0$$
.

So we find $G(p,\xi_j) = 0$, $1 \le j \le n-2$.

ii
$$\Rightarrow$$
 iii : Let $G(p,\xi_i) = 0$, $1 \le j \le n-2$.

Since we have

$$G(p) = -\sum_{j=1}^{n-2} G(p,\xi_j)$$
 , $\forall p \in M$

we observe that G = 0, $\forall p \in M$.

iii \Rightarrow iv: Suppose that $G=0, \forall p \in M$. Then because of (2.11) we have $a_{12}^j=0, 1 \leq j \leq n-2$. So $\overline{D}_{e_1}\xi_j$ has no component in the direction e. Hence we observe that $c_{2k}=0$. $3 \leq k \leq n$, in the equation (2.13).

iv \Rightarrow v: Suppose that $c_{2k}=0$. $3 \le k \le n$, in the equation (2.13). That shows that $\overline{D}_{e_j}\xi_j$ has no component in the direction e. Thus we have in the equation (2.1), $a_{12}^j=0$, $1 \le j \le n-2$.

Moreover, since $a_{11}^j = \langle \overline{D}_{e_1} \xi_j e \rangle = - \langle \xi_j, \overline{D}_{e} e \rangle = 0$ and because of the Weingarten equation we find

$$A_{\xi_j}(e) = 0, 1 \le j \le n-2.$$

 $v \Rightarrow vi$: Let $A_{\xi_i}(e) = 0$. Then, from the Weingarten equation, we have $a^j_{11} = 0$, $a^j_{12} = 0$, $1 \le j \le n-2$. Moreover, $\langle e, \xi_j \rangle = 0$ implies

$$\langle \overline{D}_{e_1} e, \xi_j \rangle = - \langle e, \overline{D}_{e_1} \xi_j \rangle.$$
 (2.14)

If we se equations 2.1 and last equations we get

$$\left\langle \overline{D}_{e_{1}}e,\xi_{j}\right\rangle =\text{ - }\left\langle e,\overline{D}_{e_{1}}\xi_{j}\right\rangle =\text{ - }a_{12}^{j}$$

and

$$\left\langle \overline{D}_{e_{l}}^{}e\xi_{j}\right\rangle =\;0\;\;. \label{eq:delta_ell}$$

From the last equation we have

$$\overline{D}_{e_1} e \in \chi(M).$$

vi \Rightarrow i : Let $\overline{D}_{e_1} e \in \chi(M)$. Then from the equation (2.14), we get $\langle \overline{D}_{e_1} e, \xi_1 \rangle = -a^j_{12} = 0$. $1 \le j \le n-2$. On the other hand, $e[\langle e_1, e_1 \rangle] = e[1]$ implies that $\langle \overline{D}_e e_1 e_1 \rangle = 0$ and $e[\langle e_1, e \rangle] = e[0]$ implies that $\langle \overline{D}_e e_1 e \rangle = 0$ (Since the generators are the geodesics of \mathbb{R}_1^n , we have $\overline{D}_e e = 0$). Thus $\overline{D}_e e_1 \in \chi(M)$.

Because of (2.6) and since $a_{12}^{j} = 0$. $1 \le j \le n-2$, we write that $\overline{D}_{e}e_{1}$ = 0.

This means tha tangent planes of M constant along the generator e of M. i.e. M is developable.

Corollary 2.5: Let M be a 2-dimensional space-like ruled surface in \mathbb{R}_1^n with a Gauss curvature beign zero. If M is minimal, then $c_{sk} = 0$, $1 \le s \le 2$, $3 \le k \le n$, in the (2.13).

Proof: Let M be minimal. Then from the equation (2.12) we have V $(e_1,e_1) = 0$. If this result is set in the Gauss equation, we find

$$\overline{\mathbf{D}}_{\mathbf{e}_{1}}^{\mathbf{e}}\mathbf{e}_{1}^{\mathbf{e}} = \mathbf{D}_{\mathbf{e}_{1}}^{\mathbf{e}}\mathbf{e}_{1}^{\mathbf{e}}.$$

This means that $\overline{D}_{e_i}e_1$ has no component in $\chi^{\perp}(M)$. Therefore we have

$$C_{1k} = 0, 3 \le k \le n. (2.15)$$

in the equation (2.13). On the other hand, since G=0, by hypothesis, and from the Theorem 2.5 we know that $C_{2k}=0$. $3 \le k \le n$. If we consider this together with (2.15) we observe that $C_{sk}=0$, $1 \le s \le 2$, $3 \le k \le n$.

REFERENCES

- [1] CHEN B.Y., Geometri of Submanifolds, Marcel Dekker, New York 1973.
- [2] HOUH, C.S., Surfaces with Maximal Lipschitz-Killing Curvature in the Direction of Mean Curvature Vector, Proc. Amer. Math. Soc. 35(1972) 537-542.
- [3] O'NEIL, B., Semi-Riemannian Geometry, Academic Pres, New York, London, 1983.
- [4] THAS, C., Een (lokale) Studie van de (m+1)-dimensionale varieteiten, van de n-dimensionale Euclidische Ruimte ℝ (n ≥ 2m+1 en m ≥ 1), Beschreven door een Eendimensionale Familie van m-dimensionale Lineaire Ruiten. Paleis Der Academien Hertogsstreet, I, Brussel, (1974).
- [5] THAS, C., Properties of Ruled Surfaces in the Euclidean Space Eⁿ Academia Sinica Vol 6, No.1, 133-142, 1978.