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ABSTRACT

A variational problem, which might be considered as a case of shape optimisation, is
studied characterising the existence of minimisers. The problem can be understood as a
model for black and white printing on digitalised printers.

A direct construction of a minimising sequence is presented, based on measure
theoretic tools. Another possible construction, using the relationship between the functional in
questions and weak x topology of L”, is given as well. The problem has the unique solution
in a relaxed sense: every minimising sequence determines the unique Young measure.

1. INTRODUCTION

Let us consider a class U of measurable functions on a bounded
open subset Q of R® with values in the segment [0, 1].

We study the problem of approximating a given function ¥ € U with
functions v from the class:

={ve U:vx) e {0, 1} (ac x € Q)},

in the sense of minimisation of the functional (hereafter p denotes
Lebesgue measure on RY)

D Jw) := g(r) f (v(y) - v(y))dyldxdr ,
K(x, N Q KannQ

where g : [0, 1] — R_* is a bounded function which satisfies

@ (v r {0, 1)) g(r) > 0.

Here and bellow K(x, r) denotes the open ball centred at x with
radius r.
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This variational preblem is closcly related to black and white printing
on digitalised printers. Tmagine that  represents the rectangle on the
papet, where the image is to be printed. Let A € [0, 1] represent the
darkness on the scale of grey, with O corresponding to pure white, and 1
to black. In this model the original picture will be represented by a
function # € 71§ which we will try to represent as well as possible by
black dots of ink and white patches of paper, represented by a function
v € V. The innermost integral in (1) represents local mean difference of
v and u. This problem was proposed by Ball in [5].

More precisely, we study the minimisation problem for J on v. Our
result is stated in the following theorem.

Theorem 1. With the notation introduced above, the following
statements hold true:

(a) inf{J(V) : Ve V} =0

(b) Each minimising sequence for J determines the unique Young
measure

v, = (1 - ux) §, + u(x) 8, (ae x € Q).
(¢) The minimum is attained if and only if u € V.

Statement (c) says that for ¥ € U\ V the minimmum is not attained
in V. Every minimising sequence exhibits a microstructure: while trying to
satisfy the constraint on the range, the functions fluctuate over
microscopic regions more and more rapidly. Nevertheless, in a broader
sense, the problem has the unique minimiser, the Young measure v. A
detailed mathematical study of microstructures was performed by Ball and
James [34].

Any function from the class V is essentially a characteristic function
of a measurable subset of . This interpretation connects our problem
with shape optimisation (for more details on shape optimisation see
Allaire et al. [1] and references there; for somehow related problems see
Mumford and Shah [10] as well.)
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2. YOUNG MEASURES

A sequence (v) in L™(Q) is said to converge weakly * to a
function v € L*°(Q), written

v 5o,
o
provided . v
(VueL‘(Q)) Dnudxaj.uudx
o Q

Every weakly * convergent sequence is clearly bounded. The
converse, of course, is not true. For p € [l, ], the spaces L”(Q) have
the weak compactness property, which does not hold for L™(Q), where
we have the weak * compactness instead. More precisely, if a sequence
(1)) is bounded in L™(Q), then therc exists a subsequence (v, ) and a

function v € L(Q), such that v, 5 v
k

The Young measures were introduced by L. C. Young (v. [15]) as a
tool for treating variational problems for which there does not exist a
minimiser in ordinary sense. The following version of the fundamental
theorem of existence and uniqueness for Young measures is due to Tartar

' {12]; a more general form was proved by Ball [2].

Theorem 2. Let Q < R® be a bounded open set, and (v) a
bounded sequence in L*°(Q; RY). Then there exists a subsequence w,),
and a family of Borel probability measures v, on R° (the Young mcasur'é)
depending measurably on x, such that for each f € C(R") we have

fouv 5 7, , 3
where f(x): = (v, f) (ac x € Q).

The Young measure (v) is said to be associated with the

n’xe
subsequence (an).

This theorem provide us with a concise measure - theoretic
characterisation of the incompatibility of weak * convergence and
nonlinear composition.
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By making specific choices for a function f € C(R") we can read of
some information regarding the structure of Young measures. For instance,
if there exists a closed set K < R’ such that v (x) € K (ac X € Q),
then supp v. ¢ K (ac x € ). To verify this we need only consider
functions f vanishing on K.

For a more detailed survey on Young measures see, for example,
Evans [8] or Valadier [14].

3. PROOF OF STATEMENTS (b) AND (c)

Assuming (a), we shall first prove statements (c) and (b). Given a
function @ € L% (Q), we define F: Q x {0, 1] - R by the formula
rani=f  emayis—doof o @

@ K& A Q n (K(X, r N Q) K&xp) A Q
Having this defnition, we establish the continuity properties of F .

Lemma 1. For each ® € L™ (Q) the function F, is continuous on
Q x {0, 1]. Moreover,

rli—IPo F, (x, r) = ax) (ae x € Q).

Dem. For (%, r) and (X', ) in Q % (0, 1] let us consider the difference

F (x,)-F (x,r)= 1 o(y) dy
B (K(x, rH N Q) Kery o @

- 1 ay) dy
il (K(x’, r) n Q) K& @

=1 o(y) dy 'j
n (K(X, r) A Q) KEHmnQ KE'HNQ

" U o(y) dy - f o) dy) f a(y) dy.
KxnnQ K&'r)ynQ K& y)nQ

After taking the absolute value on both sides, we obtain

a(y) dy)

, lol L™ p(A) (K, ) N Q)
F x,7rn-F &, 7)< L1 -
I (o] (X r) ® (x r')l < u (K(X, r) ~ Q) + "O)" i (K(X, r) A Q) (5)
Jo| L™ w(A)

T h(K& )N Q)]
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where A denotes the symmetric difference of sets K(x, r N Q and
K&, ) n Q. Since p(A) tends to zero as (X', r) aproaches (x, r), we
have the continuity of Fo.

The second statement of the lemma is merely a reformulation of the
Lebesgue-Besicovitch differentiation theorem (see, for example, Evans and
Gariepi [9, Theorem 1.7.1]), after noting that for sufficiently small radii r
one has K(x, r) ¢ Q.

Remark. By Lemma 3 (sece below), we have even more than stated

in the provious lemma. For each r, > 0 the function F, is in fact

0
uniformly continuous on Q X [r, 1].

Let us proceed by the proof of statement (c). For u € V, the
* minimum is clearly attained by taking v := u. The goal is to prove the
converse.

As the infimum of J is zero (which will be proved below), assume
JW) = 0. Therefore assumption (2), together with continuity of the
function FU 2 yields the conclusion

VxeQMre 1) F,_&n=0

Using the second part of Lemma 1 we obtain

0= Ilim F (x,r)=\)(x)-u(x)(acer).

r—>0 V-u

Thus v = u almost everywhere in Q, so if the minimum is attained for
some fnction » € V, u must necessarily be in the given class V. This
completes he proof of (c).

Let (Vx)xeﬂ
sequence (Dn). According to Theorem 2, there exists a subsequence (1)n ),
such that *

be the Young measure associated to a minimising

vV fecqp 1) fov, 5 . ©)

In particular v = v, where

f
u@:Jk@JM@xe@. ™
0
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Since (v) is a sequence in V, for each f in C([0, 1]) the
convergence in (6) implies (v, f) = 0 (ac x € Q). It follows that
supp v, < {0, 1} (ae x € ). This leads to the following expression for
the Young measure

v, = (1 - ax) 3 + a(x)8, (ac x € Q),

for some @ € L™ (Q). As J(v) = 0, and we have proved above that for
such v we have v = u almost everywhere, (7) yields the desired formula
for the Young measure, which proves statement (b).

4. CONSTRUCTION OF A MINIMISING SEQUENCE

Let us first construct a sequence of functions v, € V, being equal
on smaller and smaller cubes to the mean value of . In order to do this,
we decompose £ in a disjoint countable collection of cubes, following
Rudin [11].

For a € R? and r > 0 we shall call the set Q@, r) := {x e Rd:
ad<x<d +r 1<i<d} the rcube with comer at a. For each n €
N let P, be the set of all points in R? whose coordinates are integral
multiples of 2*. Denote by Q_ the collection of all 2”-cubes with comers
at points of P, and by Q the union of all Q.. The following lemma (id.,
p- 50) holds.

Lemma 2. Every nonempty open set Q@ < R? is a countable union
of disjoint members of Q.

Next we construct a minimising sequence. Starting with the
decomposition given by Lemma 2 (step 0), we define the sequence ()
inductively, refining the decompositions as follows.

In the n-th step we divide all 2®V-cubes into 2°-cubes, by halving
the edges. Thus we have Q represented as a disjoint union
@)

Q=) Q
keN
where for each £k € N, Qk(") € Um - Qm. Furhthermore, for each k let

Ik(") be a measurable subset of Qk("), such that
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M (z,ﬁ"’) = m® (Q‘k"’) :
where m(” denotes the average value of function u over the cube Q™.
A good choice for the sets Ik(") is to take cubes centred at points in Qk(")
of required size. Define
Q=01 ,
keN
and v := X, completing the construction.

By the construction of the sequence (v ), an easy computation gives
that (indepentently of n) the following equality holds

p(Q)= Lu(y) dy = m, , p&

where m o denotes the mean value of the function u over Q. Having the
motivation given in the introduction in mind, we have a simple
interpretation: A total quantity of ink used to represent the original picture
is in every step proportional to its mean darkness.

In proving that the sequence (v ) constructed above is a minimising
sequence for J we shall make use of the following lemma.

Lemma 3. For re€ (0,1]and me Nthesets E ":={x € Q: wKE, r) N Q)
< 2™} are closed. The family (E ") is decreasing with respect to both
indices. Moreover,

Vr,e@1)@meNNVr2r)(Vm2m) E =0 8

Dem. Each E " is closed being a preimage by the continuous function
x = WEE, 1) N Q) of a closed set [0, 2™]. The statements about the
monotonicity are obvious.

Arguing by contradiction it can easily be seen that N E'=@.

meN “m
Now, for every r, € (0, 1] we have a decreasing sequence of compact
sets having empty intersection. Then, from some point on, it must
necessarily consist of empty sets only. Combining this with the

monotonocity in » we have (8).



8 N. ANTONIC and N. BALENOVIC

Remark. Note that Lemma 3 asserts the uniform boundedness by 2™,
for some positive interger m, of the function (x, r) — WEK(E, H N Q)*
on the set Qx [r, 1].

For given ¢ > 0 we have to find n € N such that Jv) < e We
decompose the integral into two parts

‘dnn) = Il + I2
o
=f g(r)fo (v, (y)-u(y))dy)ldxdr+
0 xnnQ
Q
1
f 8 f f (v, @ - uy) dy) | dx dr.
0 K(x,)
Q
Taking 7, = m » Wwe have the estimate I, < &2 (we assumed

here that € < 2ligll (€2), since eventually € is to be taken arbitrarily
small). This was the easy part.

For n € N given, take the partition of Q into cubes as above, and
denote by Q,(x, r) the union of all such cubes contained in K(x, r) N Q.
Furthermore, denote R (x, r) := (K(x, r) N Q) \ Q,(x, ). It is clear that,
by increasing n, we can make R (x, r) uniformly small in measure, more
specifically, smaller than any prescribed 8 > 0. As R (x, r) is contained
in K(x, ) \ Q,(x, r), it is a simple matter to see that any n > d(d + log, (6,/3))
is good (8, denoting the volume of the unit ball in RY.

By the construction of the sequence (v), it follows that

1
I, sf o) f—i—f [o.(y) - u(y) dy dx dr.
¥, X, N Q X7
0 QN(K( r) ) Jr@n

Applying the remark above, there exists some m € N such that
1 <2%forr> r,» hence
}L(Iqx’ r)’\‘ Q) m+1

I, <81 - 2™ wQ) ligl .
Taking any n which satisfies

n2d{d+m+1+log,

6, (QnguL°° "'(Q) B 8)
s *
simple computations lead us to the estimate
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5< £

(1 - 1) u(sz) g||L

and thus y1eld the des1red conclusion J(v) < e. This completes the proof

of Theorem 1.

Remark. Let us additionally assume that the boundary of € has
d-dimensional Lebesgue measure zero. By the Lebesgue theorem, the
characteristic function of € is Riemann integrable. In this case, instead. of
the construction by partition of Q into cubes (which is in the spirit of
the Lebesgue theory), we could have estimated I, above by noting that
the function IFu i uI is uniformly continuous on Q x [r,, 1], for any ry €
{0, 1], as stated in the remark following Lemma 1. For such a function
the Riemann and the Lebesgue integral coincide, and the former can be
approximated by a Riemann sum. More precisely, given any & > O there
is a 8 > 0 such that for any mesh finer than & the Riemann sum is &’
close to the value of the integral.

The above was valid for any v € V. It is enough to select one such
that for a mesh finer than & the corresponding Riemann sum is zero. In
order to do that, we choose any mesh finer than &: {(x r) 11 < j < n},
and define B K(x, r) N Q For each of the atoms El, v N (i.e.
nonempty sets of the form ﬁ A where A is either B or Q\ B]) we
define v to be a charactensti’e function of some measurable set in E,,
such that:

J V) dy =J uy) dy .

E, E,
It is clear that F (xj, rj) =0 for 1 £ j < n, and the Riemann sum is
zero.

Remark. It might be of interest to note that the function F , defined by
(4), can be equally written as

E, x,n=(¢= [ o(y) e(y) dy ,
Q
where ¢ € LYQ) is a function with norm one, defined by:

Xk, nra

" WK 1) N Q)
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For a countable dense subset & := {(xj, rj) :j € N} of Q x (0, 1] we
obtain, by the above definition, a sequence (ej) having a lincar hull dense
in LY{(Q).

The weak * topology on the closed unit ball K - [0, 1] in L™(Q)
is equivalent to the topology generated by the following bounded metric
(the proof of this fact follows the lines* of Dunford and Schwartz [7,
Theorem V.5.1]):

= 1
d(u, v) = jgl —27 K\) - u, ej} .
As any u € U can be approximated by functions from V in the
weak * topology of L*(Q), we have another construction of the
minimising sequence, using Riemann sums in an analogous manner as in
the previous remark (of course, under the same additional assumption on

the boundary of Q).

More precisely, for a given &-mesh consisting of the points from
dense set 8 with the largest index n, we can find a function v € v such
that d(v - u) < % . This, in particular, gives us that

2

(Vj < n) Fu_u(xj, rj) K\) - u, ejx <e.

Thus, the Riemann sum is bounded by ellglIL,,m) w(), which
furnishes yet another comstruction of a minimising sequence.
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