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ABSTRACT

We study the spectrum of Cesaro operator in the space s, , and corresponding matrix equations.
Then we study the consequences of the variation of an element in the Cesaro matrix.

1. INTRODUCTION

We are here interested in an application on the infinite matrices theory to the
Cesaro operator C, this one being represented by:
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Such problem has been studied in Cooke [1] and Hausdorff [3]; recall the well
known following result: if X =(x,) is a sequence which converges to a limit ¢
then the sequence defined by CX =(y,) image of X by the Cesiro operator

converges to the same limit /. Another important property of this operator is that a
lower triangular matrix A is permutable with the Cesaro matrix, if and only if

A=H"'DH, where D is a diagonal matrix and
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((E) with 0 <k < n, being the number of combinations of n things, k at a time), [3].
The matrices H'DH are called the Hausdorff matrices.

More recently J.B Reade [13], and J.T. Okutayi [10] gave some results on the

spectrum of Cesaro operator, this last being considered as a map from the bounded
variation space bv into itself, bv being the space of the convergent sequences

X =(x,) such that Z nlx nel —Xp l < eo, These authors proved that this spectrum is

. 11 1 e Lo
the disk [z Y < 5 Many other authors have studied infinite matrices in the general

case, such as Maddox [6] Malkowsky [8] Mursaleen [9] Petersen (1] [i2}
Defranza and Zeller [2]

In this paper we study the spectrum of this operator, considered as a map from
the Banach space, s, into itself. s, have been used in many papers, see R. Labbas B.
De Malafosse [4] [5] or B. De Malafosee [7] We study after the properties of the
operator C—Al, when X belongs to the spectrum of C. At last, we examine the

behavior of the matrix equation, when an element is changed. More particularly, we
examine the distance between two solutions, when the index of the row, or of the
column, containing the new element tends to infinity.

This paper is organized as follows: In Section 2 we recall the definitions of the
spaces s, and S, and we give some elementary results concerning the properties of

the map C. In Section 3.1 we study the Cesaro spectrum relatively to the space s,.
In Section 3.2 we describe the space of the solutions of equation (C—-AIX =B,

when A belongs to the spectrum; this one depending on the second member. Then
we describe the image space of C—Al, and we give eigenvectors spaces. In Section

4, one studies the behavior of the matrix equation CX=B, when an element of C is
changed.
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2. FIRST PROPERTIES OF CESARO OPERATOR RELATIVELY TO THE
SPACES S, AND s,.

We study, here, the map C:X =(x,)+> CX, defined naturally by:

t
CX= [Xl,‘;‘(h +X,), ---,l(x1 +Xpt - Xp), )
n

in the space s, [3] , that we recall.
For r > 0, we denote by s, the Banach space of the one column matrices:

s —{X—(x ) :su [M] }
r = =Xyp) o Sup| == |<oop, (D
n r

normed by:

1], p[’—'] .
r n r .

Analogously, we define the Banach algebra S, of infinite matrices A = Oy )s
with unit element I=(3,,), (that is 8, =0if n # m, and 5, =1) by:

S, = {A = Q) : sup(E [l lrm"" )< oo} 3)
n m
normed by:
ol =5 o™ |
n m
when A€ S, and Xes, then AXes,, and:
||AXI Sy < ||A ISr IP(”sr )

One can then, study linear infinite system:

ZCInmxm =b, n=12,..; 4
m=]
which is equivalent to the equation AX=B, where A =(Q,,),B =(b,) are given
infinite matrices, and X =(x,) is the unknown infinite column matrix. Recall that
if

1=l =si1-culr Sanl™ |1
o m#n
the system (4) admits in s, a unique solution ;
X=3(I-A)"B. e

n20
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We see, at first, that the Cesaro operator C belongs to any space S, with R
> 1, since:

({1 1 1
sup| —| ——+ 5+t | <o
2t N{R™ R R

Throughout this paper we multiply the matrix A on the left, by a matrix D, (which
does not belong necessarily to any space S,) so that to obtain all the diagonal

elements of DA equal to 1, whenever it is possible. This method permits to calculate
easily nI—DA”S . For instance, letting D = (nd,,,) simple calculation applied to C

permits to obtain: Cl'= (DC)_ID, that is:
1
-1 2 0
c’'= -2 3 :
0 -n+! n

and we see that C™' does not belong to any space S,. However DC and (DC)™
belong to Sg,VR > 1. That is, for a given sequence B = (b,) the system:

bn=l[2xi) (n=12,.),
nii=

where X =(x ), admits a unique solution, given by: X = (=(n—-Db,_; +nb, ).

We see that if X =(x,)es; itis the same for B = (b,) and more generally C
maps s into itself, for all R > 1, since C belongs to Sy . Note that if Be s;, we
cannot deduct that it is the same for X, since C™' does not map s, into itself. In the
general case [6] it is written that A€ (s;,s;) if A maps s; into itself. It has been
proved that Ae(s,,s;) if and only if Ae€S;. One deducts that for any
r>0, Ae(s,,s,) ifand only if Ae S,.

3. PROPERTIES OF THE OPERATOR C-AI CONSIDERED AS A MAP
FROM sy INTO ITSELF

3.1 CASE WHERE i # 0, AND A ¢l, FORALL n=>1.
n

Asin [9] and [12] where the authors studied the operetor C—Al, mapping bv,
into itself, we give some properties of this operator relatively to the space sg,(R>1).
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From the preceding, we see that 0 is in the spectrum of C, since the unique solution
of equation CX=B, (where B is well chosen in Sg,R >1) does not belong to SR -

The matrix C——T1 is not invertible, since an element of its diagonal is zero, which
n

proves that 1 belongs to the spectrum of C. In the following we shall refer to the
n

matrix C, in which Cp = nh , n22:
ni-1
1
c, 1 0
Ci= . . (6)

We recall [4] the following result, where J={O,1,1/2,...,1/n,...}, and A is a
complex number:

Propositon 1. For every R > 1 and every Ag J, C—Al is bijective from sy
into itself. The spectrum of Cis o =1.

We have seen above, that J ¢ O¢ - Toprove that 6 < J, we need a lemma:

Lemma 2. Let R >0 and A¢ J, then we have (C;)' e Sg.
Let us prove that VBesgz VAgJ, equation C;X=B admits a unique

R
solution in the space sg. Let N=| —Ff¢ |41 po being areal, fixed such that
I}"l(R Po b
1/R <pgy <1; and consider the finite system:
X;=b;,
L | ™
CpXpy+X,=b,, n=2,... N-1.

which admits a unique solution, that we shall denote x?,xg,...,x%_]. Equation

Cva = B is then equivalent to the infinite system:

XN =by _ch(lzl-l’ 8)
CoXpy+X, =b,, n=N+1,N+2,...
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the first N — 1 coordinates being determined above. (8) can be written under the
form CNXN = BN, where C; is the matrix:

1
CN+1 1 0
CN+2 . ,
0 CN+n 1

and
tyN tpN 0

X =(XN’XN+1"")’ B =(bN_CNXN—I’bN+1""’bN+n"")'
The choice of N, permits to assert that:

, A|{(N+n)
”I - C{l “Sr = Snuz?[———ll(ll\l - n")-f 1|R ]S Po>

which proves that for all '(by,bn,s---)€ S, (7) admits a unique solution in sy .
Hence (C; )" € (sg,sg) and (C,)”" belongs to Sg.

Proof of the proposition. For the study of equation

(C-ADX =B, 9
in sg, A ¢ J, we need to define the matrices:
1 0
, n -1 1
D =(1—nk8"m)’ Q= 11 ; (1o
0

to obtain the equality:
C, =D(C-ADQ.
Letting X =QX', (9) is equivalent to C';\X =D'B. We deduct from the lemma that

this equation admits in s a unique solution X=Q(C';‘)_]D'B. Hence A€ o,
which permits to conclude

Corollary 3. VR >1 VAgJ:

1 1 1
e |n7»—1|R+|n}»—1||(n—1)7»—1|R2+ +|nx-11---|2x—1|R"“ =

This result comes from the calculation of (C';h)'1 which gives:
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! |
“Cz 1 0
€5C3 —C3 1

“CnCnoiChay CpCpy —Ch 1

3.2. CASE WHERE ) = %, FOR A GIVEN INTEGER N >1.
We study here the map X - (C - -I%I)x’ from sp into itself, with R > 1. It is

necessary to define the matrix EN deduced from C—%I, by deleting the first N

rows, and the first N columns. We have to consider, at first the case where N = 1,
because it is different from the others.

3.2.1.CASE ), =1.

We have the following result, where R is a real > %:

Proposition 4. For all B” = '(0, by,bj,..}e s there exist two sequences
(vn) and (Y;) such that equation

(C-DX =B (11
admits in sy infinitely many solutions which can be written under the form:

X =Y U+Y e YU+
for all complex number u.

Proof. Letting x, =u, (11) is equivalent to the system:

1 1
—=11x, =b, ——u,
[2 ] 2 2 2“

1
—X2+lx3+“'+(l_l}‘n—l =b, ——l-u, n=34,.. .
n n n n

for all value of u. This one can be written 61X=1§: (6] defined as above).
Consider, now, the product:
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C1 DC Q.
with D = (— n+l Oim ) Then we obtain:
1
_2 1 0
2
4
~7 _—— 1
Ci= 3
0 _ n+l 1
n
Since we have
n+l1
1-C =su <1,
--cil, p[ ~ ]

3 L= = . . . iy
as R > > equation C;X =B, admits for any u a unique solution X = (o 'B, in

sg. Call ¢, the eclements of (61)‘1 a simple calculation gives

Yi=bsy, Vi =—%, and for n22:

n-1
Yo = bn+1 + chm bm+]>’

m=1
_11 ~
+ el 1,
n+1 ,g‘, e

which permits to conclusion.

3.2.2. CASE WHERE \ = %, Nz22.

We need a definition to formulate the following results.

Definition 5. One can associate to every N-1-tuple by,..,by_; of complex
numbers, the linear forms ¢, ,n=12,...,N-1, defined by:

Zn(bl v--abn): ZYns bS ’

s=1
where (y,,) is the sequence defined by:
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nN if s=n,
N-n
(n—-DN .
= - (14¢ if  s=n-1, 12
Yns N (n 1)( n) (12)
-1
(1)ns if 1<s<n-2.
k=s+1
and we let:
1N
uN=§2 2 (Bysnby) .

We have the following result, where s is the space of all the complex sequences:

Proposition 6. V B = '(b,,...,by,...) € s with by # uy equation

e

does not admit a solution in s.

Proof. The N-th term of the diagonal of the matrix (C —%I) being equal to 0,

the determination of uy depends on the solution (x?,xg,...,x?\,_l) of the finite linear
system:
Axp =by,

1 (13)
Xp+ot——=Xp o +A, X, =b,; n=34,.,N
n-1 n-1
1 . . .
where A, = l__ﬁ Now we search for an expression of this solution. The
n )

calculation of
* * 1
c. =DN(C—§I]Q (14)
where Q is defined in (10), and

1 1 1
DN—dlag very—— N, —,... |,
[ M 0 A ]

gives
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1
c, 1
cy; 1 0
C*= .
N Cnop
1 0
0 Cnet 1

Letting 'Yy = (Y1, Yno1,05--), We see that, using (6) where we call C} the matrix
C

Zy = (CR)™' Yy (15)
is the unique solution of the equation C X =Y. Using the series, as it is defined
in (5), we can write:

Zy = 3, (I-C)¥ Yy

k=0

in the Banach space sg, (R >1). Denote for every k =20 (I—C'N)k = (Ui dam- A

simple calculation gives

. m+k
D" I]e; . if n=m+k-1, Vm=21,
Opmk = i=m+1
0 , otherwise.

Hence, if z;, denotes the n-th component of Zy, we obtain:

n-1 n
z, =y, + Z(—l)"_s( Hck ]ys, n=12,.. ,N-1 (16)
s=1

= k=s+1
Let
lBN = (b],bz,--'»bN—l’O"")’ (]7)
YN = D;BN .

Then we obtain the solution of (13), calculating:
-1
1
Xy =1 C—=—1| By,
fe-ti]'n,
where ‘X, = (x?,x5,...,x%_,,0,...) . So, using (14), (15) and (17) we have
Xo = (QC,I\;ID;\I By =QZy,
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which permits to obtain:
x{=2z, x°=z, -z, (2<n<N). (18)

Using (17), we get y, = b,, which gives, replacing the expression of z, (16)

_n
I-nk\
in (18):

Xg = Z’Ynsbs n22,

with:
n nN (n—-1N
= =——— 2" (l+c,
I—mh N—p [m-i N—m—n( )

and for 1<s<n-2, vy, has the form given by (12). One can conclude that if

Ynn

N-I

by # —lﬁ an (b;,....,b,) equation (C—%I)X =B does not admit a solution in
n=1

the space s.

Let us see now, what happens when by = uy.

N .
Proposition 7. There exists a real R, > —2—+1, such that V Be sg, verifying

by =uy, equation

1
—— = 19
(C I)X B (19)

admits infinitely many solutions in sg » » Which can be written under the form:

X = t(el(bl), g2(b], bz),..., eN_l(bl,..., bN—l) , U, ’Y]D+'Y/,..., YnD+Y:],...)
for all v, (y,) and (Y,) being two sequences depending on N and B.

1 1

N+1 N+2

: - 1
Proof. Define here Dy =diag( ,] where A, =l_ﬁ' When
n

N-
by = 2/ (by,-..,by ), and xy =, is arbitrary, equation (19) is equivalent to:

! zl»

nCn Xy =By (0);

CN being defined in 3.2.1, that is letting C= DyCn:
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1
.y 0
| (N+2)hy,,
C= ) ) ) ,
1 1
(N+m)Ayny,  (N+0)An,n

and

{IXN = (XN-H s XN42300s XN.,_n,...),
B (V) = (b1 (1), by 2 (), Dy (V),-1),
with:

v 1 b
Y £, (by,...by) .

ben (V) =blsn — -
vN+n( ) N+n (N+n)7VN+n (N+n)A iy o

- ~ - - N
The calculation of CQ=(c,,) gives: Cy, =1 VmC, ;=—+1 Vnz2; and
n

. N
Com =0 Vm#n,n-1. Since Ry > —+1, we have:
2

N 1
r, =(7+1}i:<1,
then Vv,Be sy, there exists a unique Xy € sg,, such that: EZXN =B'N(1))
Hence:
Xy =(©7 By =10+ Y] e Ya O+ Vo)

(Y,) and (Y'n) being two sequences obtained from ((~Z)_1 and from
by,by,ee s byt Dngrsee s€€ 3.2.1.

-co

Remark 1. More precisely, we can determine the sequences (y,) and (y'n) by
the following method: (6)_] = Q(EQ)—1 where, (as in corollary 3),
1 0

- -0l 1
cQrl= 7
0(2()(3 —(12 1

with o, = E+1. Then write By (V) =By +0fy, with:
n
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1 N-1
B ={ Bn ~ e 3 0 by |
’ N+ yn 20 i

L (1
i ( (N+n)?\'N+“ ]nzl‘

Hence (v,) = Q(EQ)_IBN, and (y'n) = Q(&Q)"BN, these calculations can be made
easily.

Remark 2. The previous proposition shows that the image space
(C—M)(SRO) is the set of the one-column matrices: ‘(bl,...,bN_l,uN,bN+],...bn,...),

where by,...,by_, by by e, are any complex numbers.

We deduct easily another result, see fio] always in the case where
A=1/N,N=2, R being defined as in Proposition 7.

Corollary 8. The eigenvector, corresponding to the eigenvalue A =1/N, can
be written under the form:

wv=lo,..,on NN [N*n ol
1 2 n+1

(1 being in the N-th position), and belongs to the space Sg, .

In fact, (C—%I}(:O implies that £ (b,,...,b,)=0, Vn=12,..N—-1, and the

system:

XN+ =Y,

n—1
(XN+I+“'+XN+H—1)— =0, n=2,3,...

—_——x
N+n N(N+n) " ™"
is equivalent to the matrix equation:
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1
—— 0
N X N+2 1
1 -2 X N+3 (N+2)v
N =- :
1 1 ——§—
N

N

We deduct, taking xpn, =v=1, that Xyy, 2( 1

]; the relation:

2 N+1 ) ,
X Nt2 —N'XN_',:; =—(N+2) implies that X3 =( ’ ] and so on... By induction,

n+p-1

p
things, p at a time, when repetitions are allowed, we have:

N N N+1 N+n-3 N+n-2
Xngn =— 1+ + +-t =
n-1 1 2 ' n-2 n-—1

which achieves the proof.

using the well known property of T} =( ] number of combinations of n

An analogous calculation can be done for N=1.

N+n
Remark 3. We deduct from the previous result that ( ):omg)
n

(n — ) since Vesg, .

4, VARIATION OF AN ELEMENT IN THE MATRIX C.

Until here, we have considered matrices deducted from C, by replacing all the
elements of the main diagonal Q,, by Q,, —A ; now we study the case where only

one element of the Cesaro matrix is changed. For this, we consider a given row i
and a given column v and denote by Q the term Qy, of the matrix C. B being

given, we study what becomes the solution of equation CX=B, when Q is replaced
by another element & in the matrix C ; C' will denote this new matrix. To know if
the new equation, that is C'X =B, admits or not a solution; we need the following
result:

Proposition 9. Equation C'X =B, admits in s a unique solution in the
following cases:
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1) H=v, and d=0,
) W=v-land Oz1/p,
iiiy for all value of o, if p different from v and v —1.

Proof. i) is obvious, because if C' has a zero element on the main diagonal it
is not invertible; for ii) d'=1/p, two rows have their corresponding elements

proportional which implies, too, that C' is not invertible. For iil) it is easy to see that
the new system has always one solution if v < U, since all the diagonal elements are

different from 0. If v > u+1 consider the system;

M=

1
— 2 Xm =by, n=12 u-Lu+l,.. v,
n

1

=4
I

(20)

1 &
— ¥ x,, +0x, =b,.
“’m:l .

A simple calculation proves that the determinant of the coefficients of the variables
1s equal to 1/v! and different from 0 for all ’#0. Call xP,x9,..., xY the

coordinates of the solution of (20), equation C’X=B being equivalent to

Cv X, =B, , Cy defined in 3.2, and:

1 & 13 o
IXV =(Xv+1,...) th =[bv+1 —méxi ,...,bn —;l—iz:;)(i yere |y

Admits a unique solution, which permits to calculation.
B being given, denote by Xaw,v), (or X,) the solution of CX=B and by

Xg (|, v), (or Xy) the solution of C’X =B whenever they exist. As we shall see
the difference X (1, v)—Xq (W, V) is a vector having only two elements different
from 0, we can then write: dc((u,v)="Xc,(},t,v)—Xo((u,v)"SI s0 we have the

following result:

Proposition 10. For a given matrix Be s, and a given real o we have:
if p=v,or u=v-1and o 20;

dy®v)=faow?), 1)
as U tends to infinity; :
mif p+l<v:
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dg (1, v) =] O), (22)
as v tends to infinity, B being fixed;
fiyif p2v+1:

dg (V) =[] OW), (23)
as | tends to infinity, for fixed v.

Proof. i) If p=v, letting

A, =diag(1,2,..,u~1,pd,p+1,..)
we get A, C'Q=(a,,), with oy =1 Vnzp; o, =pa’ o, =1-pd; and
O, =0 for the other values of n, m. Since we have

Xqe(wv)=QA,C'Q~"'A,B
and (A,C'Q)7" =(0hy), with o, =1 Vn=zp o, =1/ud; o

TS I
the other elements being equal to 0; we deduct that the n-th coordinate §, of
Xg |, v) is

E,=b,, &, =—(n-Db,_; +nb,, if n=2,..,u-1Lu+2,..;
and for n=p, or p+1:

—1+pd

, 1
& =~ =Dby g + (1A =DE-Dbyy +by,
, 1
§u+l =—(ua _1)(H—1)bu_1 —a—,bu +(H+1)bu+1.

The calculation of Xy (1, v)— X5, v)=(0,), gives:

, 1
o, =(1-pa )[(u—l)bu_1 +gb“]’
(24)

, .
Gp+1 = (1—“'0 )[(“—1)bp.l __G_,bujla

and 6, =0, Vn=u, p+1. We see that (b,)e s, implies that

X vy -Xg (;,L,v)"SI = S“quuL |Gu+1 |)= low?®) (- ).
If u=v-1, A, defined above, is replaced by A} =(n8,,), then ALCQ=(Byp),
with B, =1, Vn#p; By, =1-0W; By =l and B, =0 for the other values
of n,m; the calculation gives:
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7 2
apn ,
=——b, +auu+bb,,,,,
Ous1 =0y,

which proves (21).

il) If p+1<v an analogous calculation gives:
G, = ~cfufvb, — (v ~Db,, ],
{Guﬂ = O,“[va =(v-Db, ]’ .
G, being equal to 0, for every n#u, u+1. Hence, for a fixed value of U one gets
(22).
i) If p2v+1, we getas nonvanishing terms:
o =(1-aw b, ~(v-1b,_],
{cw =(1-awvb, +v-nb, ], (26)
which permits to obtain ‘(23). .

Remark 4. In the case p=v -1, if d’=1/u we see that, B being given such
that pb,, # (u+1) b, equation C'X =B has no solution, (since the rows of indices
W, and p+1 are proportional). Suppose now that we replace & by b’ =o' +¢, €
being any number different from 0, in the matrix C’; calling C” the new matrix so
defined, we deduct that equation C”"X =B admits one solution Xy » such that:

Xy v, =en’0M) (- ).

So we see that a slight variation of an element can imply a large variation of the
solution if we consider a big value of the index p of the row, in which we do the

substitution.

One studies, now, the case where we do a second variation of an element,
always in the same row p and in the same column v, so Qa=aq,, is replaced by b’;

as above we denote by X, the corresponding solution, we get then the following
results:

Corollary 11. If p=v or v-1 then:
[Xo =Xy, =for~bh20a) (- e; @7
if p2v+1:
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Py %y, =k-v

RO (M — o). (28)

Proof. It is enough to write Xy —X,, =Xy ~Xg+X5=Xy; so, if u=v

using (24) we get:
7 7 1 ’ 1
"Xd _Xb'"sl =|O -b |sup( gb?b” W —Dby 4 “Wbu j

which proves (27). If p=v-1, letting Xy ~X, =(0,) one deducts from (25),

ML —-Db,,_ +

’

that; 67, =0, when n#u, pu+1 and:
= b

o] =l =1 = ey o
which implies (27). At last, for up 2v+1, we deduct from (26):

[Xe =Xyl =l =brsup{v=Dby =vby|,|v =1y, +b, ),
which proves (28).

+@+1)b,,

We deduct from the preceding corollary:

Corollary 12. If u=v,or v—1 and b’=d +1 for a given integer T, then:
IXo — Xy |[sl =u’0() (@ > ).

Remark 5. 1, and v, being two integers, we can define, using the same
notations, the solution X, (u,,v;) of equation C{X =B, (where C] is now the

matrix deducted from C, replacing O=Q by b’ ) for a given B. Suppose, for

vy

instance, that v+2<u+1<p; and v; <p,. Using (26), let

6, =01, v,a) = (1-au) [vb, —(v —l)bv_l],
Oy =01, v,a) = (1-aw [vb, —(v=Db,_, |

Then we deduct:

o’(W,v,d)

"Xd (V) =Xy (g, v, )"Sl = SquG(H’ v,d) ] IG(M Vi, b))

s » IG/(HI avl El b/)[)
So one can do estimations, and obtain according to the values of {,v,{,,v,

analogous results to the preceding.
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