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ABSTRACT

. . . -1 2
We prove that there exists a diffeomorphism between any subsets Gy, and Gy, of an algebra A
of which nomzero elements are regular if there is an A-isomorphism between the rings

2
H(Glln) and H(Gp).

1. INTRODUCTION

Working on conformal equivalence by means of the ring of analytic functions
began in year 1940 [2].

Let G, and G, be two domains in the complex plane, and let
A(G;) and A(G,) be therings of analytic functions on them. If there exists a
C-isomorphism between A(G,) and A(G,), then G, and G, are conformally

equivalent, where C is the set of complex numbers [1]. The problem was generalized
to open Riemann surfaces G; and G, [5]. It was shown that two domains G, and

G, in the complex plane were conformally equivalent if the rings
B(G;) and B(G,) of all bounded analytic functions defined on them were
algebraically C-isomorphic [3]. When we discuss the rings B(G,)(i=12), it is
always assumed that G, is bounded and has the following property: for any
z€ dG;, boundary of G, , there exists a function fe B(G;) for which z is an

unremovable singularity. It is proved that if there is a C-isomorphism between
A(G;) and A(G,), then the sets G, and G, are conformally equivalent [7].
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Now our aim is to investigate the above problem for the algebra A with finite
dimensional.

2. THE HOLOMORPHIC FUNCTIONS OVER AN ALGEBRA

Let A be an associative commutative unital algebra of finite dimension m over
the field R of real numbers. We have

€ulp = Clﬁey, (o.B,y=1,...,m)
such that the set {el,ez,...,em} is a basis of the algebra A, where CZLBeY 1S a new
m m
notation for Ziclﬂey , ie, Chge, =Y Clge, called the Einstein symbol. The
= =1
coefficients CJ, are called the structure constants of the algebra A. The structure

constants are the components of the tensor field of type (1.2).

By using structure constants, in order to show that A is commutative,
associative and unital algebra, we have

Clp = Cla
ClaChe = CarxCho
Czﬁeli = CgmsB =8
respectively. Where e® is component of 1 which is the unit of A such that 1= z—:ﬁcﬁ

and §! is Kronecker's symbol. In this paper, we assume that A is an associative
commutative unital algebra.

Let X = x“ea, o =1...,m, be a variable in the algebra A, where e, and x*
denote the basis units of A and real variables, respectively. Then the function
F=f%,

functions in all x* . We have F = F(X) . Let us define the differential in A by
dX =dx%, ve dF=df%,.

If the differential dF can be represented in the form dF = F(X) dX, then
F=F(X) is said to be A-holomorphic (A-differentiable), where F(X) represents
the derivative of F(X) [4, 6, 8].
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Theorem 2.1. The function F=F(X) is A-holomorphic if and only if
C,D=DC, M

~ O

. f
where C, =(Cly) are structure constants matrix and D = [8

W ] is real Jacobian
X

matrix such that y and B represent row and column, respectively [4].
The equality (1) are called Schafters conditions[4]. In particular, if A =C is
the complex number algebra (m =2), the Schaffers conditions coincide with the

Cauchy-Riemann conditions: Let us consider the algebra C =R(i), i’ =-1. The
dimension of the algebra C is 2. The basis of the algebra C is the set fe,.e , } such
that e; =1, e, =1i. If the equality

ee; = Ciljel +C§ez

is considered, we have the structure constants matrices

Cl - C}I Ci2 — 10
Ch Ch) (01
c,=[Cn Ca :[0 —1)_
Ch Cn) (1 0
The Jacobian matrix of the function f(z) = u(x, y) +iv(x,y) is that

o[t Uy
Vi vyl

Using the Schaffers conditions C,D=DC,, o =12 we have

10uxuy_uxuy10
0 T){ve vy] vy v,]{0 1

or shortly



42 E. KADIOGLU

Therefore from the equalities C;D =DC, and C,D =DC,, , we obtained
Uy =V, Uy =V,
known as the Cauchy-Riemann conditions.

Note that, generally, A-holomorphic functions and analytic functions are
different in algebra A [8].

3. DIFFEOMORPHISM BETWEEN G! AND G}

Let G', (i=1,2) be subsets of the algebra A. If there exists a bijective function

f:G, - Glzn such that the functions f and t~' are A-differentiable, then the

function f is called an A-diffeomorphism. If f is an A-diffeomorphism. the
determinant of the Jacobian matrix D, of the function f is not zero. That is,
[D¢|>0 or |D¢| <0, where |Dg| is determinant of the Jacobian matrix Dy . Note that,
if we consider the set of the complex numbers C, then a diffeomorphism, generally,
is not a conformal mapping. Let F: GL] — A be a A-holomorphic mapping and

@:G., — G% be A-diffeomorphism. Since

m

CO‘DFoq)fl = DFoqflCa )

Fo(p_1 :G2 — A is a A-holomorphic mapping, where D Fog-! is the Jacobian

m

matrix of Fo (p'1 .

On the other hand the sets

H(G!) = {F: G', —» A:Fis a A-holomorphic function} i=12)
become a ring under the operations

F+G)(X) =FX)+G(X) and (FG)X) = FX)G(X).

2

Theorem 3.L.If ¢: G', — G2 is a diffeomorphism, then @:H(G},) = H(G ).

m m
®(F) =Fo q)"1 is an A-isomorphism, i.e, the isomorphism & satisfies @) =a for
every Qe A.

Proof. It is easily shown that & is bijective and ®(F+G) = ®(F) + ®(G) and
O(FG) = ®(F)P(G) . Thus & is an isomorphism. On the other hand ®Q) =a for
all ae A, Thus @ is an A-isomorphism.
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Definition 3.2. Let o be a nonzero element of the algebra A. If there cxists
Be A such that o8 =1, then oce A is said to be a regular element.

For each o€ G!

m

M(a) = e H(G,) : Fo) = 0},

(i=1,2), we consider the set

Lemma 3.3. M(o) isa principal ideal of H(Gi ) (i=12) generated by the

m
function X —¢ .
Proof. The proof is clear.

Now, suppose that nonzero elements of the algebra A are regular, We can write
the following lemma such that G (i=1,2) is asubset of A.

m

Lemma 3.4. M(a) is a maximal ideal of H(Gi ).

m

Proof. For instant, suppose that M(o:) is not a maximal ideal. In that case
there exists an ideal I which contains M(q) . There exists a function G such that
Gel and G M(a). Thus, G(o) 0. If H(X) =G(X)-G(oy, then He M(a) 1.
Hence, we have G(0)=G(X)-H(X). Since G(a)e A is a regular element, we
have I = H(Gim). Hence, the assertion holds.

Definition 3.5. M(w) is called a fixed maximal ideal of H(G.). All other

m

maximal ideals of H(Gin) are called free maximal ideals.

Theorem 3.6. If @ : H(G. ) — H(G?2) is an A-isomorphism, then there exists
m m

an A-diffeomorphism between G|, and G2 .

Proof. Let @ H(Gin) - H(an) be an A-isomorphism. Then, to every fixed
maximal ideal M(a) of H(G}n) corresponds to a fixed maximal ideal
M (o) of H(G%). If we put o =q@(a); then (p:G1 — G?

" m . is a bijective

mapping. In order to prove that ¢: Gin - an
G,(X)=X on G2 . Then G, e H(G2) . Since @ is an A-isomorphism. there
exists E e H(G:n) such that (D'I(Go) =F,. It is then easy to see that, for any

oe Gln, F,(X)-F, ()€ M(o) and OFE (X)-F (o)) e M'(a) hence

is an A-diffeomorphism, let us put
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GX)-F,(a)=X-F,(a)e M'(0) = M'(gp(ct)) .
This shows that ¢e H(G2), i.e. ¢ is a A-holomorphic function. Similarly, we can

also show that (p"1 is an A-bolomorphic function. Hence, ¢ is an A-

diffeomorphism.
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