Commun. Fac. Sci. Univ. Ank. Series A1 V. 50 pp. 55-63 (2001)

A SUBSET OF THE SPACE OF THE ENTIRE SEQUENCES

K.C. RAO1, N. SUBRAMANIAN2

¹Dept. of Mathematics, Mohamed Sathak Engineering College, Kilakarai, India. ²Dept. of Mathematics, Shanmugha Arts, Science, Techn. and Research Acad., Tanjore, India.

(Received June 27, 2001; Accepted Nov. 08, 2001)

ABSTRACT

Let Γ denote the space of all entire sequences. Let \wedge denote the space of all analytic sequences. This paper is devoted to a study of the general properties of Sectional space Γ_x of Γ .

KEYWORDS

Sectional sequence spaces, entire sequences, analytic sequences.

AMS SUBJECT CLASSIFICATION: 46A45.

1. INTRODUCTION

A complex sequence whose k^{th} term is x_k will be denoted by (x_k) or x. A sequence $x = (x_k)$ is said to be analytic if $\sup_{(k)} |x_k|^{1/k} < \infty$. The vector space of all analytic sequences will be denoted by \wedge . A sequence x is called entire sequence $\lim_{k \to \infty} |x_k|^{1/k} = 0$. The vector space of all entire sequences will be dedenoted by Γ .

Let
$$\Gamma_s = \{x = (x_k) : \xi = (\xi_k) \in \Gamma\}$$
.
where $\xi_k = x_1 + x_2 + ... + x_k$ for $k = 1, 2, 3, ...$.
and $\Lambda_s = \{y = (y_k) : \eta = (\eta_k) \in \Lambda\}$.
where $\eta_k = y_1 + y_2 + ... + y_k$ for $k = 1, 2, 3, ...$.
Then Γ_s and Λ_s are metric spaces with the metric $d(x, y) = \sup_{\{k\}} \{|\xi_k - \eta_k|^{1/k} : k = 1, 2, 3, ...\}$.

Let $\sigma(\Gamma)$ denote the vector space of all sequences $x = (x_k)$ such that

 $\{\xi_k / k\}$ is an entire sequence. We recall that cs_0 denotes the vector space of all sequences $x = (x_k)$ such that

 $\{\xi_k\}$ is a null sequence. Let $\Phi = \{\text{all finite sequences}\}\$.

 $\delta^{(n)} = (0,0,...,1,0,0,...)$, 1 in the nth place and zero's elsewhere. An FK-space

X is said to have AK-property if $(\delta^{(n)})$ is a Schauder basis for X.

If X is a sequence space, we define the β -dual X^{β} of X by

$$X^{\beta} = \left\{ a = (a_k) : \sum_{k=1}^{\infty} a_k x_k \text{ is convergent, for every } x \in X \right\}.$$

Remark:

$$\begin{split} x &= (x_k) \in \sigma(\Gamma) \Leftrightarrow \left\{ \frac{x_1 + x_2 + \ldots + x_k}{k} \right\} \in \Gamma. \\ &\Leftrightarrow \left| \frac{\left| x_1 + x_2 + \ldots + x_k \right|}{k} \right|^{1/k} \to 0 \text{ as } k \to \infty. \\ &\Leftrightarrow \left| x_1 + x_2 + \ldots + x_k \right|^{1/k} \to 0 \text{ as } k \to \infty, \text{ because } k^{1/k} \to 1 \text{ as } k \to \infty \\ &\Leftrightarrow (x_k) \in \Gamma_s. \end{split}$$

Hence $\Gamma_s = \sigma(\Gamma)$, the Cesáro space of order 1.

In this paper we investigate

- (i) set-inclusion between Γ_s and Γ ,
- (ii) AK-property possessed by Γ_s ,
- (iii) Solidity of Γ_s as a linear space,
- (iv) β -dual of Γ_s ,
- (v) Relation between Γ_s and $\Gamma \cap cs_0$,
- (vi) the Cesáro space of order $\alpha > 0$ of the entire sequences.

Proposition 1. $\Gamma_s \subset \Gamma$.

Proof.

Let
$$x \in \Gamma_s$$
.

$$\Rightarrow \xi \in \Gamma$$

$$\Rightarrow |\xi_k|^{1/k} \to 0 \text{ as } k \to \infty.$$
(1.1)

But
$$x_k = \xi_k - \xi_{k-1}$$
.

Hence
$$|x_k|^{1/k} \le |\xi_k|^{1/k} + |\xi_{k-1}|^{1/k}$$

 $\le |\xi_k|^{1/k} + |\xi_{k-1}|^{1/k-1}$
 $\to 0 \text{ as } k \to \infty \text{ by using (1.1)}$
 $\Rightarrow x \in \Gamma.$
 $\Rightarrow \Gamma_s \subset \Gamma.$

Note: The above inclusion is strict.

Take the sequence $\delta^{(1)} \in \Gamma$. We have

and so on.

Now $|\xi_k|^{1/k} = 1$ for all k. Hence $\{|\xi_k|^{1/k}\}$ does not tend to zero as $k \to \infty$. So $\delta^{(1)} \notin \Gamma_s$. Thus the inclusion $\Gamma_s \subset \Gamma$ is strict. This completes the proof.

Proposition 2. Γ_s has AK-property.

Proof.

Let
$$x = (x_k) \in \Gamma_s$$
 and take $x^{[n]} = (x_1, x_2, ..., x_n, 0, 0, ...)$, for $n = 1, 2, 3, ...$ Hence
$$d(x, x^{[n]}) = \sup_{(k)} \left\{ \left| \xi_k - \xi_k^{(n)} \right|^{1/k} \right\}.$$
$$= \sup \left\{ \left| \xi_{n+1} - \xi_n \right|^{\frac{1}{n-1}}, \left| \xi_{n+2} - \xi_n \right|^{\frac{1}{n-2}} ... \right\} \to 0 \text{ as } n \to \infty.$$

Therefore, $x^{[n]} \to x$ as $n \to \infty$ in Γ_s . Thus Γ_s has AK. This completes the proof. **Corollary.** The set $\{\delta^{(1)}, \delta^{(2)}, \ldots\}$ is a Schauder basis for Γ_s .

Proposition 3. Γ_s is a linear space over field C of complex numbers. **Proof.**

Let $x = (x_k)$ and $y = (y_k)$ belong to Γ_s . Let $\alpha, \beta \in C$. Then $\xi = (\xi_k) \in \Gamma$ and $\eta = (\eta_k) \in \Gamma$. But Γ is a linear space. Hence $\alpha \xi + \beta \eta \in \Gamma$. Consequently $\alpha x + \beta y \in \Gamma_s$. Therefore Γ_s is linear. This completes the proof.

Proposition 4. Γ_s is solid.

Proof.

Let $|x_k| \le |y_k|$ with $y = (y_k) \in \Gamma_s$. So, $|\xi_k| \le |\eta_k|$ with $\eta = (\eta_k) \in \Gamma$. But Γ is solid. Hence $\xi = (\xi_k) \in \Gamma$. Therefore $x = (x_k) \in \Gamma_s$. Hence Γ_s is solid. This completes the proof.

Proposition 5. In Γ , weak convergence does not imply strong convergence.

Proof.

Assume that weak convergence implies strong convergence in Γ_s . Then we would have $(\Gamma_s)^{\beta\beta} = \Gamma_s$. (see [8]) But

$$(\Gamma_{r})^{\beta\beta} = \wedge^{\beta} = \Gamma.$$

By Proposition 1, Γ_s is a proper subspace of Γ . Thus $(\Gamma_s)^{\beta\beta} \neq \Gamma_s$. Hence weak convergence does not imply strong convergence in Γ_s . This completes the proof.

Proposition 6. $\wedge \subset (\Gamma_s)^{\beta} \subset \wedge(\Delta)$.

Proof.

Step 1.

By Proposition 1., we have

$$\Gamma_{\epsilon} \subset \Gamma$$
.

Hence

$$\Gamma^{\beta} \subset (\Gamma_s)^{\beta}$$

But

$$\Gamma^{\beta} = \wedge$$

Therefore

$$\wedge \subset (\Gamma_s)^{\beta}. \tag{6.1}$$

Step 2.

Let $y = (y_k) \in (\Gamma_s)^{\beta}$. Consider

$$f(x) = \sum_{k=1}^{\infty} x_k y_k.$$

where $x = (x_k) \in \Gamma_s$. Take

$$x = \delta^{n} - \delta^{n+1}$$
= (0,0,0,...,1, -1,0,0,...)
$$n^{\text{th}} (n+1)^{\text{th}} \text{ place}$$

where, for each fixed n = 1,2,3,...

 $\delta^{(n)} = (0,0,...,1,0,...), 1$ in the nth place and zero's elsewhere. Then $f(\delta^n - \delta^{n+1}) = y_n - y_{n+1}.$

Hence

$$|y_n - y_{n+1}| = |f(\delta^n - \delta^{n+1})|$$

$$\leq ||f||d(\delta^n - \delta^{n+1}, 0)|$$

$$\leq ||f||.1$$

So, $\{y_n - y_{n+1}\}$ is bounded.

Consequently $\{y_n - y_{n+1}\} \in \Lambda$. That is $\{y_n\} \in \Lambda(\Delta)$. But $y = (y_n)$ is originally in $(\Gamma_s)^{\beta}$. Therefore

$$(\Gamma_s)^{\beta} \subset \wedge(\Delta). \tag{6.2}$$

From (5.1) and (5.2) we conclude that

$$\wedge \subset (\Gamma_s)^{\beta} \subset \wedge(\Delta).$$

This completes the proof.

Proposition 7. The β -dual space of Γ_s is \wedge .

Proof.

Step 1.

Let $y = (y_k)$ be an arbitrary point in $(\Gamma_s)^{\beta}$. If y is not in \wedge , then for each natural number n, we can find an index k(n) such that

$$\left|y_{k(n)}\right|^{1/k(n)} > n, (n = 1,2,...).$$

Define $x = (x_k)$ by

$$x = 1/n^k$$
 for $k = k(n)$; and $x = 0$ otherwise.

Then x is in Γ , but for infinitely many k,

$$\left| y_k x_k \right| > 1. \tag{7.1}$$

Consider the sequence $z = \{z_k\}$, where

$$z_1 = x_1 - s$$
 with $s = \sum x_k$; and $z_k = x_k (k = 2,3,...)$.

Then z is a point of Γ . Also $\sum z_k = 0$. Hence z is in Γ_s . But, by the equation (7.1) $\sum z_k y_k$ does not converge. Thus the sequence y would not to be in $(\Gamma_s)^{\beta}$. This contradiction proves that

$$(\Gamma_s)^{\beta} \subset \wedge. \tag{7.2}$$

Step 2.

By (6.1) of Proposition 6 we have

$$\wedge \subset (\Gamma_s)^{\beta}. \tag{7.3}$$

From (6.2) and (6.3) it follows that the β -dual space of $(\Gamma_s)^{\beta}$ is \wedge . This completes the proof.

Proposition 8. $(\Gamma_s)^{\mu} = \wedge$ for $\mu = \alpha, \beta, \gamma, f$.

Step 1

 Γ_s has AK by Proposition 2. Hence by Theorem 7.3.9 in [1] we get $(\Gamma_s)^{\beta} = (\Gamma_s)^f$.

But $(\Gamma_{s})^{\beta} = \wedge$. Hence

$$(\Gamma_s)^f = \wedge. \tag{I}$$

Step 2

Since AK \Rightarrow AD. Hence by Theorem 7.3.9 in [1] we get $(\Gamma_s)^{\beta} = (\Gamma_s)^{\gamma}$. Therefore

$$(\Gamma_s)^{\gamma} = \wedge.$$
 (II)

Step 3

Γ, has normal by Proposition 4. Hence by Theorem in [1] we get

$$(\Gamma_s)^{\alpha} = (\Gamma_s)^{\gamma} = \wedge.$$
 (III)

From (I), (II) and (III) we have

$$(\Gamma_s)^{\alpha} = (\Gamma_s)^{\beta} = (\Gamma_s)^{\gamma} = (\Gamma_s)^{f} = \wedge.$$

Proposition 9. Let Y be any FK-space $\supset \Phi$. Then $Y \supset \Gamma_s$ if and only if the sequence $\{\delta^{(k)}\}$ is weakly analytic.

Proof.

The following implications establish the result.

 $Y \supset \Gamma_s \Leftrightarrow Y^f \subset (\Gamma_s)^f$, since Γ_s has AD and by using 8.6.1 in [1].

$$\Leftrightarrow Y^f \subset \land$$
, since $(\Gamma_c)^f = \land$.

- \Leftrightarrow for each $f \in Y'$, the topological dual of $Y.f(\delta^{(k)}) \in \land$.
- $\Leftrightarrow f(\delta^{(k)})$ is analytic.
- \Leftrightarrow The sequence $\{\delta^{(k)}\}$ is weakly analytic.

This completes the proof.

Proposition 10. $\Gamma_s = \Gamma \cap cs_0$.

Proof.

By Proposition 1, $\Gamma_s \subset \Gamma$. Also, since every entire sequence (ξ_k) is a null sequence, it follows that (ξ_k) is a null sequence. In other words $(\xi_k) \in cs_0$.

Thus $\Gamma_s \subset cs_0$. Consequently,

$$\Gamma_{s} \subset \Gamma \cap cs_{0}. \tag{10.1}$$

On the other hand, if $(x_k) \in \Gamma \cap cs_0$, then

$$f(z) = \sum_{k=1}^{\infty} x_k z^{k-1}$$

is an entire function. But $(x_k) \in cs_0$. So,

$$f(1) = x_1 + x_2 + ... = 0.$$

Hence

$$\frac{f(z)}{1-z} = \sum_{k=1}^{\infty} (\xi_k) z^{k-1}$$

is also an entire function. Hence $(\xi_k) \in \Gamma$. So $x = (x_k) \in \Gamma_s$. But (x_k) is arbitrary in $\Gamma \cap cs_0$. Therefore

$$\Gamma \cap cs_0 \subset \Gamma_s. \tag{10.2}$$

From (10.1) and (10.2) we get

$$\Gamma_s = \Gamma \cap cs_0$$
.

This completes the proof.

Definition. Let $\alpha > 0$ be not an integer. Write $S_n^{(\alpha)} = \sum_{\gamma=1}^n A_{n-\gamma}^{(\alpha-1)} x_{\gamma}$, where $A_{\mu}^{(\alpha)}$

denotes the binomial coefficient

$$\frac{(\mu+\alpha)(\mu+\alpha-1)...(\alpha+1)}{\mu!}.$$

Then $(x_n) \in \sigma^{\alpha}(\Gamma)$ means that $\left\{ \frac{S_n^{(\alpha)}}{A_n^{(\alpha-1)}} \right\} \in \Gamma$.

Proposition 11. Let $\alpha > 0$ be a number which is not an integer. Then

$$\Gamma \cap \sigma^{\alpha}(\Gamma) = \theta$$

where θ denotes the sequence (0,0,...,0).

Proof.

Since $(x_n) \in \sigma^{\alpha}(\Gamma)$ we have

$$\left\{\frac{S_n^{(\alpha)}}{A_n^{(\alpha-1)}}\right\} \in \Gamma.$$

This is equivalent to $(S_n^{(a)}) \in \Gamma$. This, in turn, is equivalent to the assertion that

$$f_{\alpha}(z) = \sum_{n=1}^{\infty} S_n^{(\alpha)} z^{n-1}$$

is an integral (entire) function. Now

$$f_{\alpha}(z) = \frac{f(z)}{(1-z)^{\alpha}}.$$

Since α is not an integer, f(z) and $f_{\alpha}(z)$ cannot both be integral functions, for if one is an integral function, the other has a branch at z=1. Hence the assertion holds good. So, the sequence 0=(0,0,...,0) belongs to both Γ and $\sigma^{\alpha}(\Gamma)$. But this is the only sequence common to both these spaces. Hence

$$\Gamma \cap \sigma^{\alpha}(\Gamma) = \theta.$$

This completes the proof.

Definition. Fix k = 0,1,2,... Given a sequence (x_k) , put

$$\xi_{k,p} = \frac{x_{1+k} + x_{2+k} + \dots + x_{p+k}}{p}$$

for p = 1,2,3,... Let $(\xi_{k,p} : p = 1,2,3,...) \in \Gamma$ uniformly in k = 0,1,2,....

Then we call (x_k) an "almost entire sequence". The set of all almost entire sequences is denoted by Δ .

Proposition 12. $\Gamma \cap \sigma^{\alpha}(\Gamma) = \Delta$. where Δ is the set of all almost entire sequences. **Proof.**

Put
$$k = 0$$
. Then $(\xi_{0,p}) \in \Gamma \Leftrightarrow \left(\frac{x_1 + x_2 + ... + x_p}{p}\right) \in \Gamma$

$$\Leftrightarrow |x_1 + x_2 + ... x_p|^{1/p} \to 0 \quad \text{as} \quad p \to \infty.$$

$$\Leftrightarrow x_1 + x_2 + ... = 0.$$

$$\Leftrightarrow (x_k) \in cs_0.$$

$$\Leftrightarrow \Delta \subset cs_0.$$
(12.1)

Put k = 1. Then

$$(\xi_{1,p}) \in \Gamma \Leftrightarrow \left(\frac{x_2 + \dots + x_p}{p}\right) \in \Gamma.$$

$$\Leftrightarrow |x_2 + x_3 + \dots + x_p|^{1/p} \to 0 \text{ as } p \to \infty.$$

$$(12.2)$$

Similarly we get

$$x_3 + x_4 + \dots = 0. ag{12.3}$$

$$x_4 + x_5 + \dots = 0. ag{12.4}$$

and so on.

From (12.1) and (12.2) it follows that

$$x_1 = (x_1 + x_2 + ...) - (x_2 + x_3 + ...) = 0.$$

Similarly we obtain $x_2 = 0$, $x_3 = 0$,... and so on. Hence $\Delta = \theta$ where θ denotes the sequence (0,0,...). Thus we have proved that

$$\Gamma \cap \sigma^{\alpha}(\Gamma) = \theta$$
 and $\Delta = \theta$.

In other words, $\Gamma \cap \sigma^{\alpha}(\Gamma) = \Delta$. This completes the proof.

REFERENCES

- [1] Brown, I.H., Entire methods of summation, Comp. Maths., 21 (1969), 35-42.
- [2] Rao, K.C., The space of Entire sequences, Sequence Spaces and Applications, 1999, 1-8 Narosa Publishing House, New Delhi, India.
- [3] -, Cesáro spaces of analytic sequences, Proceedings of the National Academy of Sciences, India 57(A) (1981), 95-97.
- [4] -, Symmetry and some sequence space, Comm. de la Fac. Sci., Uni. Ank., 33 (1984), 51-53.
- [5] -, Srinivasalu, T.G., Operators on Analytic and Entire Sequences, Bull. Malaysian Mathematical Society 14 (1991), 41-54.
- [6] Heller, I., Contributions to the Theory of Divergent Series, Pacific Journal of Mathematics 2 (1952), 153-177.
- [7] Kamthan, P.K, Gupta, M., Sequence Spaces and Series, Marcel Dekker, New York and Basel, 1981.
- [8] Wilansky, A., Summability Through Functional Analysis, North-Holland, Amsterdam, 1984.